Araştırma Makalesi
BibTex RIS Kaynak Göster

Kazınmış Asfalt Atığı ve Cam Elyaf ile Üretilen Betonların Fiziksel ve Mekanik Özeliklerinin Araştırılması

Yıl 2022, Cilt: 8 Sayı: 3, 480 - 490, 31.12.2022

Öz

Beton hacminin büyük bir çoğunluğunu agregalar oluşturduğundan atık agregaların kullanımı, doğal agrega tüketimini azaltmak, atık bertarafına katkı sağlamak ve maliyeti düşürmek için tercih edilmektedir. Betondan beklenen en önemli özellik basınç dayanımıdır. Ancak bu çalışmada basınç dayanımın yanında betonların çekme dayanımlarını iyileştirmek amacıyla Kazınmış Asfalt Atığı (KAA) ile Cam Elyaf (CE) kullanılmıştır. Deneysel çalışma için KAA ağırlıkça %0 (REF), %30, %60 ve %90 oranlarında 0-4 mm boyutlarında kırma kum ile ikame edilerek, 6 mm uzunluğuna sahip olan CE ise ağırlıkça 0.5, 1 ve 1.5 kg/m3 miktarda karışıma dahil edilmiştir. Bağlayıcı olarak CEM I 42.5 R tipi çimento, agrega olarak da kırma kum (0-4 mm) ve kırma taş (4-12 mm) agregası kullanılmıştır. Su/çimento oranı 0.4 olarak sabit tutulmuştur. Beton numuneleri 15x15x15, 10x10x10 ve 7.1x7.1x7.1 cm boyutlarında üretilmiştir. Üretilen numuneler 7 ve 28 gün süreyle standart kür havuzunda bekletildikten sonra deneyler uygulanmıştır. Çalışmada kapsamında numunelere slump (çökme), basınç dayanımı, yarmada çekme dayanımı, birim hacim ağırlık, su emme, porozite ve aşınma direnci deneyleri yapılmıştır. Deneyler sonucunda, 28 günlük numunelerde en yüksek basınç dayanımı 63.84 MPa değeri ile REF numunesinde, en düşük dayanım ise 39.44 MPa değeriyle KAA90-CE1.5 numunesinde ölçülmüştür. Yapılan çalışma sonucunda KAA’nın ikame oranı %30 ve CE kullanım miktarı 1.0 kg/m3 olarak belirlenmiştir.

Kaynakça

  • [1] S.V. Bittencourt, M.S. Magalhães, M.E.N. Tavares, “Mechanical Behavior And Water İnfiltration of Pervious Concrete İncorporating Recycled Asphalt Pavement Aggregate” Case Studies in Construction Materials, vol. 14, pp. e00473, 2021. https://doi.org/10.1016/j.cscm.2020.e00473
  • [2] M.A. Kareem, A.A. Raheem, K.O. Oriola, R. Abdulwahab, “A Review on Application of Oil Palm Shell As Aggregate İn Concrete - Towards Realising A Pollution-Free Environment And Sustainable Concrete” Environmental Challenges. vol. 8, pp. 100531, 2022. https://doi.org/10.1016/j.envc.2022.100531
  • [3] S. Erdem, M.A. Blankson, “Environmental Performance And Mechanical Analysis of Concrete Containing Recycled Asphalt Pavement (RAP) And Waste Precast Concrete As Aggregate” Journal of Hazardous Materials, vol. 264, pp. 403-410, 2014. https://doi.org/10.1016/j.jhazmat.2013.11.040
  • [4] A. Adesina, S. Das, “Crack Properties, Toughness and Absorption Evaluation Of FRCC İncorporating Reclaimed Asphalt Pavement and Crumb Rubber As Aggregates” Cleaner Materials. vol. 1, pp. 100004, 2021. https://doi.org/10.1016/j.clema.2021.100004
  • [5] A. Abbadi, P.A.M. Basheer, J.P. Forth, “Effect of Hybrid Fibres on The Static Load Performance of Concrete Beams” Materials Today :Proceedings, vol. 65, pp. 681-687, 2022. https://doi.org/10.1016/j.matpr.2022.03.263
  • [6] H. Zhao, B. Jia, H. Huang, Y. Mou, “Experimental Study on Basic Mechanical Properties of Basalt Fiber Reinforced Concrete” Materials. vol. 13, pp. 1362. 2020. https://doi.org/10.3390/ma13061362
  • [7] W. Lin, S. He, S. Qiao, Z. Xiang, Y. Qui, J. Zhang, J. Li, “Combined Effects of Expansive Agents and Glass Fibres on The Fracture Performance of Seawater and Sea-Sand Concrete” Journal of Materials Research and Technology, vol. 20, pp. 1839-1859, 2022. https://doi.org/10.1016/j.jmrt.2022.08.019
  • [8] K. Zhao, L. Zhao, J. Hou, X. Zhang, Z. Feng, S. Yang, “Effect of Vibratory Mixing on The Slump, Compressive Strength, and Density of Concrete with The Different Mix Proportions” Journal of Materials Research and Technology, vol. 15 pp. 4208-4219, 2021. https://doi.org/10.1016/j.jmrt.2021.10.033
  • [9] B. Dündar, E. Çınar, H. Özkaya, “Profillit katkılı lifli harçların fiziksel ve mekanik özelliklerinin incelenmesi” İleri Teknoloji Bilimleri Dergisi, vol.8 (2), pp. 17-27, 2019.
  • [10] I. Hussian, B. Ali, T. Akhtar, M.S. Jameel, S.S. Raza, “Comparison of Mechanical Properties of Concrete and Design Thickness of Pavement With Different Types of Fiber-Reinforcements (Steel, Glass, and Polypropylene)” Case Studies in Construction Materials, vol. 13, pp. e00429, 2020. https://doi.org/10.1016/j.cscm.2020.e00429
  • [11] B. Dündar, E. Çınar, S. Peşin, “Bazalt ve karbon lif takviyeli betonların fiziksel ve mekanik özelliklerinin araştırılması” Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 10 (4) pp. 1039-1048, 2020.
  • [12] S. Anandaraj, J. Rooby, P.O. Awoyera, R. Gobinath, “Structural Distress in Glass Fibre-Reinforced Concrete under Loading and Exposure to Aggressive Environments” Construction and Building Materials. vol. 197 pp. 862-870, 2019. https://doi.org/10.1016/j.conbuildmat.2018.06.090
  • [13] TS EN 197-1, Çimento- Bölüm 1: Genel çimentolar- Bileşim, özellikler ve uygunluk kriterleri, TSE, Ankara Türkiye, 2012.
  • [14] TS EN 1008-2003, Beton-Karma suyu-Numune alma, deneyler ve beton endüstrisindeki işlemlerden geri kazanılan su dahil, suyun, beton karma suyu olarak uygunluğunun tayini kuralları, TSE, Ankara Türkiye, 2003.
  • [15] TS 706 EN 12620+A1, Beton agregaları, TSE, Ankara Türkiye, 2009.
  • [16] TS 802-2016, Beton karışım tasarımı hesap esasları, TSE, Ankara Türkiye, 2016.
  • [17] TS EN 12350-2, Beton- Taze beton deneyleri - Bölüm 2: Çökme (slump) deneyi, TSE, Ankara Türkiye, 2019.
  • [18] TS EN 12390-3, Beton – Sertleşmiş beton deneyleri – Bölüm 3: Deney numunelerinin basınç dayanımının tayin, TSE, Ankara Türkiye, 2019.
  • [19] TS EN 12390-6, Beton- Sertleşmiş beton deneyleri - Bölüm 6: Deney numunelerinin yarmada çekme dayanımının tayini, TSE, Ankara Türkiye, 2010.
  • [20] TS EN 1170-6. Ön yapımlı beton mamuller-Cam elyaf takviyeli çimento (ctç) deney metodu-Bölüm 6: Suya daldırma yoluyla su emme ve kuru yoğunluk tayini, TSE, Ankara Türkiye, 1999.
  • [21] TS 2824 EN 1338/AC, Zemin döşemesi için beton kaplama blokları-Gerekli şartlar ve deney metotları, TSE, Ankara Türkiye, 2009.
  • [22] M. Amin, B.A. Tayeh, İ.S. Agwa, “Investigating The Mechanical And Microstructure Properties of Fibre-Reinforced Lightweight Concrete under Elevated Temperatures” Case Studies in Construction Materials. vol. 13, pp. e00459, 2020. https://doi.org/10.1016/j.cscm.2020.e00459
  • [23] N. Hossiney, H.K. Sepuri, M.K. Mohan, H.R. Arjun, S. Govindaraju, J. Chyne, “Alkali-Activated Concrete Paver Blocks Made with Recycled Asphalt Pavement (RAP) Aggregates. Case Studies” Construction Materials. vol. 12, pp. e00322, 2020. https://doi.org/10.1016/j.cscm.2019.e00322
  • [24] Y., Khodair, M. Raza, “Sustainable Self-Consolidating Concrete Using Recycled Asphalt Pavement and High Volume of Supplementary Cementitious Materials” Construction and Building Materials. vol. 131, pp. 245-253, 2017. https://doi.org/10.1016/j.conbuildmat.2016.11.044
  • [25] Z. Marcalikova, M. Racek, P. Mateckova, R. Cajka, “Comparison of Tensile Strength Fiber Reinforced Concrete With Different Types of Fibers” Procedia Structural Integrity. vol. 28, pp. 950-956, 2020. https://doi.org/10.1016/j.prostr.2020.11.068
  • [26] S. Ahmad, A. Umar, A. Masood, “Properties of Normal Concrete, Self-compacting Concrete and Glass Fibre-reinforced Self-compacting Concrete: An Experimental Study” Procedia Engineering. vol. 173, pp. 807-813, 2017. https://doi.org/10.1016/j.proeng.2016.12.106

Investigation of Physical and Mechanical Properties of Concrete Produced with Scraped Asphalt Waste and Glass Fiber

Yıl 2022, Cilt: 8 Sayı: 3, 480 - 490, 31.12.2022

Öz

Since aggregates constitute the majority of the concrete volume, the use of waste aggregates is preferred to reduce natural aggregate consumption, contribute to waste disposal and reduce costs. The most important property expected from concrete is compressive strength. However, in this study, Recycle Asphalt Pavement (RAP) and Glass Fiber (GF) were used to improve the tensile strength of concrete as well as compressive strength. For the experimental study, RAP was replaced with 0-4 mm crushed sand at 0% (REF), 30%, 60% and 90% by weight, and GF with 6 mm length was included in the mixture in the amount of 0.5, 1 and 1.5 kg/m3 by weight has been done. CEM I 42.5 R type cement was used as binder, and crushed sand (0-4 mm) and crushed stone (4-12 mm) aggregate were used as aggregate. The water/cement ratio was waited constant at 0.4. Concrete samples were produced in dimensions of 15x15x15, 10x10x10 and 7.1x7.1x7.1 cm. After the samples produced were waited in the standard curing pool for 7 and 28 days, the experiments were carried out. In the scope of the study, Slump test, compressive strength, splitting tensile strength, unit volume weight, water absorption, porosity and Böhme (abrasion) experiments were performed on the samples. As a result of the experiments, the highest compressive strength was measured in the REF sample and the lowest strength was measured in the KAA90-CE1.5 sample in 28-day samples. As a result of the study, the ideal WAA replacement rate was determined as 30% and the most ideal CE usage amount was determined as 1.0 kg/m3.

Kaynakça

  • [1] S.V. Bittencourt, M.S. Magalhães, M.E.N. Tavares, “Mechanical Behavior And Water İnfiltration of Pervious Concrete İncorporating Recycled Asphalt Pavement Aggregate” Case Studies in Construction Materials, vol. 14, pp. e00473, 2021. https://doi.org/10.1016/j.cscm.2020.e00473
  • [2] M.A. Kareem, A.A. Raheem, K.O. Oriola, R. Abdulwahab, “A Review on Application of Oil Palm Shell As Aggregate İn Concrete - Towards Realising A Pollution-Free Environment And Sustainable Concrete” Environmental Challenges. vol. 8, pp. 100531, 2022. https://doi.org/10.1016/j.envc.2022.100531
  • [3] S. Erdem, M.A. Blankson, “Environmental Performance And Mechanical Analysis of Concrete Containing Recycled Asphalt Pavement (RAP) And Waste Precast Concrete As Aggregate” Journal of Hazardous Materials, vol. 264, pp. 403-410, 2014. https://doi.org/10.1016/j.jhazmat.2013.11.040
  • [4] A. Adesina, S. Das, “Crack Properties, Toughness and Absorption Evaluation Of FRCC İncorporating Reclaimed Asphalt Pavement and Crumb Rubber As Aggregates” Cleaner Materials. vol. 1, pp. 100004, 2021. https://doi.org/10.1016/j.clema.2021.100004
  • [5] A. Abbadi, P.A.M. Basheer, J.P. Forth, “Effect of Hybrid Fibres on The Static Load Performance of Concrete Beams” Materials Today :Proceedings, vol. 65, pp. 681-687, 2022. https://doi.org/10.1016/j.matpr.2022.03.263
  • [6] H. Zhao, B. Jia, H. Huang, Y. Mou, “Experimental Study on Basic Mechanical Properties of Basalt Fiber Reinforced Concrete” Materials. vol. 13, pp. 1362. 2020. https://doi.org/10.3390/ma13061362
  • [7] W. Lin, S. He, S. Qiao, Z. Xiang, Y. Qui, J. Zhang, J. Li, “Combined Effects of Expansive Agents and Glass Fibres on The Fracture Performance of Seawater and Sea-Sand Concrete” Journal of Materials Research and Technology, vol. 20, pp. 1839-1859, 2022. https://doi.org/10.1016/j.jmrt.2022.08.019
  • [8] K. Zhao, L. Zhao, J. Hou, X. Zhang, Z. Feng, S. Yang, “Effect of Vibratory Mixing on The Slump, Compressive Strength, and Density of Concrete with The Different Mix Proportions” Journal of Materials Research and Technology, vol. 15 pp. 4208-4219, 2021. https://doi.org/10.1016/j.jmrt.2021.10.033
  • [9] B. Dündar, E. Çınar, H. Özkaya, “Profillit katkılı lifli harçların fiziksel ve mekanik özelliklerinin incelenmesi” İleri Teknoloji Bilimleri Dergisi, vol.8 (2), pp. 17-27, 2019.
  • [10] I. Hussian, B. Ali, T. Akhtar, M.S. Jameel, S.S. Raza, “Comparison of Mechanical Properties of Concrete and Design Thickness of Pavement With Different Types of Fiber-Reinforcements (Steel, Glass, and Polypropylene)” Case Studies in Construction Materials, vol. 13, pp. e00429, 2020. https://doi.org/10.1016/j.cscm.2020.e00429
  • [11] B. Dündar, E. Çınar, S. Peşin, “Bazalt ve karbon lif takviyeli betonların fiziksel ve mekanik özelliklerinin araştırılması” Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 10 (4) pp. 1039-1048, 2020.
  • [12] S. Anandaraj, J. Rooby, P.O. Awoyera, R. Gobinath, “Structural Distress in Glass Fibre-Reinforced Concrete under Loading and Exposure to Aggressive Environments” Construction and Building Materials. vol. 197 pp. 862-870, 2019. https://doi.org/10.1016/j.conbuildmat.2018.06.090
  • [13] TS EN 197-1, Çimento- Bölüm 1: Genel çimentolar- Bileşim, özellikler ve uygunluk kriterleri, TSE, Ankara Türkiye, 2012.
  • [14] TS EN 1008-2003, Beton-Karma suyu-Numune alma, deneyler ve beton endüstrisindeki işlemlerden geri kazanılan su dahil, suyun, beton karma suyu olarak uygunluğunun tayini kuralları, TSE, Ankara Türkiye, 2003.
  • [15] TS 706 EN 12620+A1, Beton agregaları, TSE, Ankara Türkiye, 2009.
  • [16] TS 802-2016, Beton karışım tasarımı hesap esasları, TSE, Ankara Türkiye, 2016.
  • [17] TS EN 12350-2, Beton- Taze beton deneyleri - Bölüm 2: Çökme (slump) deneyi, TSE, Ankara Türkiye, 2019.
  • [18] TS EN 12390-3, Beton – Sertleşmiş beton deneyleri – Bölüm 3: Deney numunelerinin basınç dayanımının tayin, TSE, Ankara Türkiye, 2019.
  • [19] TS EN 12390-6, Beton- Sertleşmiş beton deneyleri - Bölüm 6: Deney numunelerinin yarmada çekme dayanımının tayini, TSE, Ankara Türkiye, 2010.
  • [20] TS EN 1170-6. Ön yapımlı beton mamuller-Cam elyaf takviyeli çimento (ctç) deney metodu-Bölüm 6: Suya daldırma yoluyla su emme ve kuru yoğunluk tayini, TSE, Ankara Türkiye, 1999.
  • [21] TS 2824 EN 1338/AC, Zemin döşemesi için beton kaplama blokları-Gerekli şartlar ve deney metotları, TSE, Ankara Türkiye, 2009.
  • [22] M. Amin, B.A. Tayeh, İ.S. Agwa, “Investigating The Mechanical And Microstructure Properties of Fibre-Reinforced Lightweight Concrete under Elevated Temperatures” Case Studies in Construction Materials. vol. 13, pp. e00459, 2020. https://doi.org/10.1016/j.cscm.2020.e00459
  • [23] N. Hossiney, H.K. Sepuri, M.K. Mohan, H.R. Arjun, S. Govindaraju, J. Chyne, “Alkali-Activated Concrete Paver Blocks Made with Recycled Asphalt Pavement (RAP) Aggregates. Case Studies” Construction Materials. vol. 12, pp. e00322, 2020. https://doi.org/10.1016/j.cscm.2019.e00322
  • [24] Y., Khodair, M. Raza, “Sustainable Self-Consolidating Concrete Using Recycled Asphalt Pavement and High Volume of Supplementary Cementitious Materials” Construction and Building Materials. vol. 131, pp. 245-253, 2017. https://doi.org/10.1016/j.conbuildmat.2016.11.044
  • [25] Z. Marcalikova, M. Racek, P. Mateckova, R. Cajka, “Comparison of Tensile Strength Fiber Reinforced Concrete With Different Types of Fibers” Procedia Structural Integrity. vol. 28, pp. 950-956, 2020. https://doi.org/10.1016/j.prostr.2020.11.068
  • [26] S. Ahmad, A. Umar, A. Masood, “Properties of Normal Concrete, Self-compacting Concrete and Glass Fibre-reinforced Self-compacting Concrete: An Experimental Study” Procedia Engineering. vol. 173, pp. 807-813, 2017. https://doi.org/10.1016/j.proeng.2016.12.106
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular İnşaat Mühendisliği
Bölüm Makaleler
Yazarlar

Turhan Can Karcı 0000-0002-2993-0178

Behcet Dündar 0000-0003-0724-9469

Emriye Çınar Resuloğulları 0000-0002-9435-2968

Yayımlanma Tarihi 31 Aralık 2022
Gönderilme Tarihi 13 Ekim 2022
Kabul Tarihi 29 Aralık 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 8 Sayı: 3

Kaynak Göster

IEEE T. C. Karcı, B. Dündar, ve E. Çınar Resuloğulları, “Kazınmış Asfalt Atığı ve Cam Elyaf ile Üretilen Betonların Fiziksel ve Mekanik Özeliklerinin Araştırılması”, GMBD, c. 8, sy. 3, ss. 480–490, 2022.

Gazi Journal of Engineering Sciences (GJES) publishes open access articles under a Creative Commons Attribution 4.0 International License (CC BY) 1366_2000-copia-2.jpg