Conference Paper
BibTex RIS Cite

Antisimetrik Fiber Metal Laminat Plakaların Titreşim Davranışları

Year 2023, Volume: 9 Issue: 2, 264 - 276, 31.08.2023

Abstract

Bu çalışmada, Fiber Metal Laminat (FML) kompozit malzemenin serbest titreşim analizi sayısal olarak gerçekleştirilmişir. FML'ler, karbon/epoksi (CARALL), cam/epoksi (GLARE) veya aramid/epoksi (ARALL) gibi fiber takviyeli polimer kompozitlerden oluşan ve alüminyum levhalarla desteklenen hibrit yapılar olarak tanımlanmaktadır. Diferansiyel kuadratür (DQ) yöntemiyle modellenen FML kompozit yapıların titreşim parametreleri belirlenmiştir. Modelin doğruluğunu kanıtlamak için elde edilen doğal frekanslar deneysel yöntemle elde edilen sonuçlarla karşılaştırılmıştır. Antisimetrik karbon ve cam fiberlerinin yönlenme açılarının FML levhalarının düzlem içi titreşim özellikleri üzerindeki etkisi çeşitli sınır koşulları altında sayısal olarak incelenmiştir. Aynı sınır koşulu ve konfigürasyon durumları için CARALL kompozitin birinci doğal frekans değeri 297.62 Hz olarak bulunmuştur, GLARE kompozitin ise doğal frekans değeri 236.59 Hz olarak hesaplanmıştır. Ayrıca, Al/C/G/C/Al gibi hibrit tabaka dizilimine sahip FML'nin doğal frekans değeri 278.49 Hz olarak elde edilmiştir ve bu değer, Al/G/C/G/Al dizilimi için elde edilen 254.46 Hz doğal frekans değerinden daha yüksektir. Araştırmanın bir diğer önemli sonucu, tüm FML'lerde en yüksek doğal frekanslar CCCC sınır koşulunda görülmüştür.

References

  • [1] R. Kolar, "Dynamic characteristics of layered metal-fiber composites including transverse shear deformation," Smart Materials II, 2002, vol. 4934: SPIE, pp. 270-278. doi:https://doi.org/10.1117/12.469170
  • [2] H. Ravishankar, R. Rengarajan, K. Devarajan and B. Kaimal, "Free vibration bahaviour of fiber metal laminates, hybrid composites, and functionally graded beams using finite element analysis," International Journal of Acoustics and Vibration, vol. 21, no. 4, pp. 418-428, 2016. doi: https://doi.org/10.20855/ijav.2016.21.4436
  • [3] C. Tao, Y. Fu and T. Dai, "Dynamic analysis for cracked fiber-metal laminated beams carrying moving loads and its application for wavelet based crack detection," Composite Structures, vol. 159, pp. 463-470, 2017. doi:https://doi.org/10.1016/j.compstruct.2016.09.087
  • [4] B. Han, W. Hui, Q. C. Zhang, Z. Y. Zhao, F. Jin, Q. Zhang, T. J. Lu and B. H. Lu, "A refined quasi-3D zigzag beam theory for free vibration and stability analysis of multilayered composite beams subjected to thermomechanical loading," Composite Structures, vol. 204, pp. 620-633, 2018. doi:https://doi.org/10.1016/j.compstruct.2018.08.005
  • [5] B. Harras, R. Benamar and R. White, "Experimental and theoretical investigation of the linear and non-linear dynamic behaviour of a glare 3 hybrid composite panel," Journal of Sound and Vibration, vol. 252, no. 2, pp. 281-315, 2002. doi:https://doi.org/10.1006/jsvi.2001.3962
  • [6] A. Secgin, C. Atas and A. S. Sarigül, "The effects of composite plate design parameters on linear vibrations by discrete singular convolution method," Journal of Composite Materials, vol. 43, no. 24, pp. 2963-2986, 2009. doi:https://doi.org/10.1177/0021998309345
  • [7] F. A. Ghasemi, R. Paknejad and K. M. Fard, "Effects of geometrical and material parameters on free vibration analysis of fiber metal laminated plates," Mechanics & Industry, vol. 14, no. 4, pp. 229-238, 2013. doi:https://doi.org/10.1051/meca/2013062
  • [8] E. Prasad and S. Sahu, "Vibration analysis of woven fiber metal laminated plates—experimental and numerical studies," International Journal of Structural Stability And Dynamics, vol. 18, no. 11, p. 1850144, 2018. doi:https://doi.org/10.1142/S0219455418501444
  • [9] A. R. Ghasemi and M. Mohandes, "Free vibration analysis of micro and nano fiber-metal laminates circular cylindrical shells based on modified couple stress theory," Mechanics of Advanced Materials and Structures, vol. 27, no. 1, pp. 43-54, 2020. doi:https://doi.org/10.1080/15376494.2018.1472337
  • [10] S. Maraş and M. Yaman, "Free vibration analysis of fiber-metal laminated composite plates using differential, generalized and harmonic quadrature methods: experimental and numerical studies," Engineering Computations, vol. 39, no. 6, pp. 2326-2349, 2022. doi:https://doi.org/10.1108/EC-08-2021-0490
  • [11] A. Shooshtari and S. Razavi, "Nonlinear free and forced vibrations of anti-symmetric angle-ply hybrid laminated rectangular plates," Journal of Composite Materials, vol. 48, no. 9, pp. 1091-1111, 2014. doi:https://doi.org/10.1177/0021998313482156
  • [12] C. Tao, Y.-M. Fu and H.-L. Dai, "Nonlinear dynamic analysis of fiber metal laminated beams subjected to moving loads in thermal environment," Composite Structures, vol. 140, pp. 410-416, 2016. doi:https://doi.org/10.1016/j.compstruct.2015.12.011
  • [13] Y. Fu, Y. Chen and J. Zhong, "Analysis of nonlinear dynamic response for delaminated fiber–metal laminated beam under unsteady temperature field," Journal of Sound and Vibration, vol. 333, no. 22, pp. 5803-5816, 2014. doi:https://doi.org/10.1016/j.jsv.2014.06.015
  • [14] X. Shao, Y. Fu and Y. Chen, "Nonlinear dynamic response and active control of fiber metal laminated plates with piezoelectric actuators and sensors in unsteady temperature field," Smart Materials and Structures, vol. 24, no. 5, p. 055023, 2015. doi:10.1088/0964-1726/24/5/055023
  • [15] H. Moraveji Tabasi, J. Eskandari Jam, K. Malekzadeh Fard and M. Heydari Beni, "Buckling and free vibration analysis of fiber metal-laminated plates resting on partial elastic foundation," Journal of Applied and Computational Mechanics, vol. 6, no. 1, pp. 37-51, 2020. doi:10.22055/JACM.2019.28156.1489
  • [16] Z. A. Siddiqi, ''Analysis of interacting subdomains in structural mechanics problems by the differential quadrature method,'' Ph.D. dissertation, The University of Oklahoma, Norman, Oklahoma, 1995.
  • [17] R. Bellman and J. Casti, "Differential quadrature and long-term integration," Journal of mathematical analysis and Applications, vol. 34, no. 2, pp. 235-238, 1971. doi:https://doi.org/10.1016/0022-247X(71)90110-7
  • [18] C. Shu and B. E. Richards, "Application of generalized differential quadrature to solve two‐dimensional incompressible Navier‐Stokes equations," International Journal for Numerical Methods in Fluids, vol. 15, no. 7, pp. 791-798, 1992. doi:https://doi.org/10.1002/fld.1650150704
  • [19] L. P. Kollar and G. S. Springer, Mechanics of composite structures. Cambridge university press, 2003. [20] R. F. Gibson, Principles of composite material mechanics. CRC press, 2016.
  • [21] M. R. Aydin, V. Acar, F. Cakir, Ö. Gündoğdu and H. Akbulut, "Comparative dynamic analysis of carbon, aramid and glass fiber reinforced interply and intraply hybrid composites," Composite Structures, vol. 291, p. 115595, 2022. doi:https://doi.org/10.1016/j.compstruct.2022.115595
  • [22] S. Maraş, M. Yaman, M. F. Şansveren and S. K. Reyhan, "Free vibration analysis of fiber metal laminated straight beam," Open Chemistry, vol. 16, no. 1, pp. 944-948, 2018. doi:https://doi.org/10.1515/chem-2018-0101
  • [23] J. T. Utomo, D. D. Susilo and W. W. Raharja, "The influence of the number and position of the carbon fiber lamina on the natural frequency and damping ratio of the carbon-glass hybrid composite," in International Conference on Engineering, Science and Nanotechnology, vol. 1788, no. 1: Solo, Indonesia:AIP Publishing, 2017. pp. 1-6. [24] P. Y. Muddappa, T. Rajanna and G. Giridhara, "Effects of different interlaminar hybridization and localized edge loads on the vibration and buckling behavior of fiber metal composite laminates," Composites Part C: Open Access, vol. 4, p. 100084, 2021. doi:https://doi.org/10.1016/j.jcomc.2020.100084
  • [25] E. Prasad and S. Sahu, "Free vibration analysis of fiber metal laminated plates," in International Conference on Theoretical, Applied, Computational and Experimental Mechanics, Kharagpur, India: Proceedings of ICTACEM, 2017. pp. 1-10.

Vibration Behaviors of Antisymmetric Fiber Metal Laminated Composite Plates

Year 2023, Volume: 9 Issue: 2, 264 - 276, 31.08.2023

Abstract

In this study, free vibration analysis of Fiber Metal Laminated (FML) composite, which is one of the frequently preferred materials in the automotive, aircraft and aerospace industry due to its light weight, durability, good fatigue and corrosion resistance, was performed numerically. The FMLs are hybrid structures composed of fiber-reinforced polymer composites such as carbon/epoxy (CARALL), glass/epoxy (GLARE), or aramid/epoxy (ARALL) with aluminum sheets. The vibration parameters of the FML composite structures modeled by differential quadrature (DQ) methods have been determined. The natural frequencies obtained to prove the accuracy of the model are compared with the results obtained by experimental method. The effects of the change in the orientation angles of the antisymmetric carbon and glass fibers on the in-plane vibration properties of the FML plates under various boundary conditions were numerically investigated. Numerical analyzes were carried out parametrically. Finally, the most important layer configurations that are effective in the vibration characteristics of the hybrid structure have been obtained.

References

  • [1] R. Kolar, "Dynamic characteristics of layered metal-fiber composites including transverse shear deformation," Smart Materials II, 2002, vol. 4934: SPIE, pp. 270-278. doi:https://doi.org/10.1117/12.469170
  • [2] H. Ravishankar, R. Rengarajan, K. Devarajan and B. Kaimal, "Free vibration bahaviour of fiber metal laminates, hybrid composites, and functionally graded beams using finite element analysis," International Journal of Acoustics and Vibration, vol. 21, no. 4, pp. 418-428, 2016. doi: https://doi.org/10.20855/ijav.2016.21.4436
  • [3] C. Tao, Y. Fu and T. Dai, "Dynamic analysis for cracked fiber-metal laminated beams carrying moving loads and its application for wavelet based crack detection," Composite Structures, vol. 159, pp. 463-470, 2017. doi:https://doi.org/10.1016/j.compstruct.2016.09.087
  • [4] B. Han, W. Hui, Q. C. Zhang, Z. Y. Zhao, F. Jin, Q. Zhang, T. J. Lu and B. H. Lu, "A refined quasi-3D zigzag beam theory for free vibration and stability analysis of multilayered composite beams subjected to thermomechanical loading," Composite Structures, vol. 204, pp. 620-633, 2018. doi:https://doi.org/10.1016/j.compstruct.2018.08.005
  • [5] B. Harras, R. Benamar and R. White, "Experimental and theoretical investigation of the linear and non-linear dynamic behaviour of a glare 3 hybrid composite panel," Journal of Sound and Vibration, vol. 252, no. 2, pp. 281-315, 2002. doi:https://doi.org/10.1006/jsvi.2001.3962
  • [6] A. Secgin, C. Atas and A. S. Sarigül, "The effects of composite plate design parameters on linear vibrations by discrete singular convolution method," Journal of Composite Materials, vol. 43, no. 24, pp. 2963-2986, 2009. doi:https://doi.org/10.1177/0021998309345
  • [7] F. A. Ghasemi, R. Paknejad and K. M. Fard, "Effects of geometrical and material parameters on free vibration analysis of fiber metal laminated plates," Mechanics & Industry, vol. 14, no. 4, pp. 229-238, 2013. doi:https://doi.org/10.1051/meca/2013062
  • [8] E. Prasad and S. Sahu, "Vibration analysis of woven fiber metal laminated plates—experimental and numerical studies," International Journal of Structural Stability And Dynamics, vol. 18, no. 11, p. 1850144, 2018. doi:https://doi.org/10.1142/S0219455418501444
  • [9] A. R. Ghasemi and M. Mohandes, "Free vibration analysis of micro and nano fiber-metal laminates circular cylindrical shells based on modified couple stress theory," Mechanics of Advanced Materials and Structures, vol. 27, no. 1, pp. 43-54, 2020. doi:https://doi.org/10.1080/15376494.2018.1472337
  • [10] S. Maraş and M. Yaman, "Free vibration analysis of fiber-metal laminated composite plates using differential, generalized and harmonic quadrature methods: experimental and numerical studies," Engineering Computations, vol. 39, no. 6, pp. 2326-2349, 2022. doi:https://doi.org/10.1108/EC-08-2021-0490
  • [11] A. Shooshtari and S. Razavi, "Nonlinear free and forced vibrations of anti-symmetric angle-ply hybrid laminated rectangular plates," Journal of Composite Materials, vol. 48, no. 9, pp. 1091-1111, 2014. doi:https://doi.org/10.1177/0021998313482156
  • [12] C. Tao, Y.-M. Fu and H.-L. Dai, "Nonlinear dynamic analysis of fiber metal laminated beams subjected to moving loads in thermal environment," Composite Structures, vol. 140, pp. 410-416, 2016. doi:https://doi.org/10.1016/j.compstruct.2015.12.011
  • [13] Y. Fu, Y. Chen and J. Zhong, "Analysis of nonlinear dynamic response for delaminated fiber–metal laminated beam under unsteady temperature field," Journal of Sound and Vibration, vol. 333, no. 22, pp. 5803-5816, 2014. doi:https://doi.org/10.1016/j.jsv.2014.06.015
  • [14] X. Shao, Y. Fu and Y. Chen, "Nonlinear dynamic response and active control of fiber metal laminated plates with piezoelectric actuators and sensors in unsteady temperature field," Smart Materials and Structures, vol. 24, no. 5, p. 055023, 2015. doi:10.1088/0964-1726/24/5/055023
  • [15] H. Moraveji Tabasi, J. Eskandari Jam, K. Malekzadeh Fard and M. Heydari Beni, "Buckling and free vibration analysis of fiber metal-laminated plates resting on partial elastic foundation," Journal of Applied and Computational Mechanics, vol. 6, no. 1, pp. 37-51, 2020. doi:10.22055/JACM.2019.28156.1489
  • [16] Z. A. Siddiqi, ''Analysis of interacting subdomains in structural mechanics problems by the differential quadrature method,'' Ph.D. dissertation, The University of Oklahoma, Norman, Oklahoma, 1995.
  • [17] R. Bellman and J. Casti, "Differential quadrature and long-term integration," Journal of mathematical analysis and Applications, vol. 34, no. 2, pp. 235-238, 1971. doi:https://doi.org/10.1016/0022-247X(71)90110-7
  • [18] C. Shu and B. E. Richards, "Application of generalized differential quadrature to solve two‐dimensional incompressible Navier‐Stokes equations," International Journal for Numerical Methods in Fluids, vol. 15, no. 7, pp. 791-798, 1992. doi:https://doi.org/10.1002/fld.1650150704
  • [19] L. P. Kollar and G. S. Springer, Mechanics of composite structures. Cambridge university press, 2003. [20] R. F. Gibson, Principles of composite material mechanics. CRC press, 2016.
  • [21] M. R. Aydin, V. Acar, F. Cakir, Ö. Gündoğdu and H. Akbulut, "Comparative dynamic analysis of carbon, aramid and glass fiber reinforced interply and intraply hybrid composites," Composite Structures, vol. 291, p. 115595, 2022. doi:https://doi.org/10.1016/j.compstruct.2022.115595
  • [22] S. Maraş, M. Yaman, M. F. Şansveren and S. K. Reyhan, "Free vibration analysis of fiber metal laminated straight beam," Open Chemistry, vol. 16, no. 1, pp. 944-948, 2018. doi:https://doi.org/10.1515/chem-2018-0101
  • [23] J. T. Utomo, D. D. Susilo and W. W. Raharja, "The influence of the number and position of the carbon fiber lamina on the natural frequency and damping ratio of the carbon-glass hybrid composite," in International Conference on Engineering, Science and Nanotechnology, vol. 1788, no. 1: Solo, Indonesia:AIP Publishing, 2017. pp. 1-6. [24] P. Y. Muddappa, T. Rajanna and G. Giridhara, "Effects of different interlaminar hybridization and localized edge loads on the vibration and buckling behavior of fiber metal composite laminates," Composites Part C: Open Access, vol. 4, p. 100084, 2021. doi:https://doi.org/10.1016/j.jcomc.2020.100084
  • [25] E. Prasad and S. Sahu, "Free vibration analysis of fiber metal laminated plates," in International Conference on Theoretical, Applied, Computational and Experimental Mechanics, Kharagpur, India: Proceedings of ICTACEM, 2017. pp. 1-10.
There are 23 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Conference Paper
Authors

Sinan Maraş 0000-0002-2651-374X

Mustafa Yaman 0000-0002-6929-8058

Publication Date August 31, 2023
Submission Date December 18, 2022
Acceptance Date July 19, 2023
Published in Issue Year 2023 Volume: 9 Issue: 2

Cite

IEEE S. Maraş and M. Yaman, “Vibration Behaviors of Antisymmetric Fiber Metal Laminated Composite Plates”, GJES, vol. 9, no. 2, pp. 264–276, 2023.

Gazi Journal of Engineering Sciences (GJES) publishes open access articles under a Creative Commons Attribution 4.0 International License (CC BY). 1366_2000-copia-2.jpg