LAMIACEAE FAMİLYASINA AİT 37 TIBBİ BİTKİNİN HMG-KOA REDÜKTAZ İNHİBİTÖR AKTİVİTELERİ
Yıl 2020,
Cilt: 5 Sayı: 3, 24 - 33, 31.12.2020
Serkan Yiğitkan
Abdulselam Ertaş
,
Mehmet Fırat
,
Yeter Yeşil
İlkay Erdoğan Orhan
Öz
3-Hidroksi-3-metil-glutaril-koenzim A (HMG-KoA) redüktaz enzimi kolesterol biyosentezinde görev alan anahtar enzimdir. Dolayısıyla HMG-KoA redüktaz inhibisyonu hiperkolesterolemi tedavisi için en önemli hedeflerden biridir. Diğer yandan, yeni ilaç keşfi araştırmalarında tıbbi bitkiler ve bunlardan izole edilen moleküller önemli bir yer tutmaktadır. Bu çalışmada, Türkiye’de yetişen ve daha önce bu enzime yönelik olarak üzerinde araştırma yapılmamış olan Lamiaceae familyasına ait 37 bitki taksonunun etanol ekstrelerinin in vitro HMG-KoA redüktaz enzim inhibisyon aktiviteleri ELISA mikroplak yöntemi kullanılarak araştırılmıştır. Taramamız sonucunda Salvia inhibitör etkili bulunan ekstreler, Salvia multicaulis Vahl. (% 61,66 ± 1,52) ve Salvia blepharochlaena Hedge & Hub.Mor. (% 55,21 ± 1,12) olarak tespit edilmiştir.
Destekleyen Kurum
Gazi Üniversitesi
Proje Numarası
02/2018-16
Teşekkür
Çalışmamızı 02/2018-16 proje kodu ile destekleyen Gazi Üniversitesi Bilimsel Araştırma Projeleri Birimine teşekkür ederiz.
Kaynakça
- Referans1 Gholamhoseinian A, Shahouzehi B, Sharifi-Far F. Inhibitory activity of some plant methanol extracts on 3-Hydroxy-3-Methylglutaryl coenzyme a reductase. International Journal of Pharmacology. 2010; 6(5):705-711.
- Referans2 Singh R, Nain S. A mini-review on hyperlipidemia: common clinical problem. Interventional Cardiology Journal. 2018; 4(3):10-11.
- Referans3 Steinberg D. Low density lipoprotein oxidation and its pathobiological significance. Journal of Biological Chemistry. 1997; 272(34):20963–20966.
- Referans4 Baskaran G, Shukor MY, Salvamani S, Ahmad SA, Shaharuddin NA, Pattiram PD. HMG-CoA reductase inhibitory activity and phytocomponent investigation of Basella alba leaf extract as a treatment for hypercholesterolemia. Drug Design, Development and Therapy. 2015; 9:509- 517.
- Referans5 Gülcan HO, Yiğitkan S, Orhan, İE. The natural products as hydroxymethylglutaryl-Coa reductase inhibitors. Letters in Drug Design & Discovery. 2019; 16:1130-1137.
- Referens6 Endo A. The discovery and development of HMG-CoA reductase inhibitors. Atherosclerosis Supplements. 2004; 5:67-80.
- Referans7 Shen C, Huang L, Xiang H, Deng M, Gao H, Zhu Z, Lui M, Luo G. Inhibitory effects on the HMG-CoA Reductase in the chemical constituents of the Cassia mimosoides Linn. Revista Romana de Medicina de Laborator. 2016; 24(4).
- Referans8, Reddy Palvai V, Urooj A. Inhibition of 3-Hydroxy-3-methylglutaryl Coenzyme A Reductase (Ex Vivo) by Morus indica (Mulberry). Chinese Journal of Biology. 2014:1–5.
- Referans9 Güneş F, Özhatay N. (2011). An ethnobotanical study from Kars (Eastern) Turkey. Biological Diversity and Conservation. 2011; 4:30-41.
- Referans10 Kültür Ş. Medicinal plants used in Kırklareli Province (Turkey). Journal of Ethnopharmacology. 2007; 111:341-364.
11. Li M, Li Q, Zhang C, Zhang N, Cui Z, Huang L, Xiao P. An ethnopharmacological investigation of medicinal Salvia plants (Lamiaceae) in China. Acta Pharmaceutica Sinica B. 2013; 3(4):273-280.
- Referans12 Wang K, Bao L, Xiong W, Ma K, Han J, Wang W, Liu H. Lanostane triterpenes from the Tibetan medicinal mushroom Ganoderma leucocontextum and their inhibitory effects on HMG-CoA reductase and α-glucosidase. Journal of Natural Products. 2015; 78(8):1977-1989.
- Referans13 Harvey AL. Natural products in drug discovery. Drug Discovery Today. 2008; 13(19-20):894-901.
- Referans14 Harvey AL, Edrada-Ebel R, Quinn RJ. The re-emergence of natural products for drug discovery in the genomics era. Nature Reviews Drug Discovery. 2015; 14(2):111-129.
- Referans15 Newman DJ, Cragg GM. Natural products as sources of new drugs over the 30 years from 1981 to 2010. Journal of Natural Products. 2012; 75(3):311-335.
- Referans16 Dias DA, Urban S, Roessner U. A historical overview of natural products in drug discovery. Metabolites. 2012; 2(2):303-333.
Referans17 Mishra BB, Tiwari VK. Natural products: an evolving role in future drug discovery. European Journal of Medicinal Chemistry. 2011; 46(10):4769-4807.
- Referans18 Appleton DR, Buss AD, Butler MS. A simple method for high-throughput extract prefractionation for biological screening. CHIMIA - International Journal for Chemistry. 2007; 61(6):327-331.
Referans19 Karr S. Epidemiology and management of hyperlipidemia. The American Journal of Managed Care. 2017; 23(9):139.
- Referans20 Schachter M. Chemical, pharmacokinetic and pharmacodynamic properties of statins: an update. Fundamental & Clinical Pharmacology. 2005; 19(1):117-125.
- Referans21 Mager DR. Statins: the good, the bad, and the unexpected. Home Healthcare Now. 2016; 34(7):388-393.
- Referans22 Azemawah V, Movahed MR, Centuori P, Penaflor R, Riel PL, Situ S, Hashemzadeh M. State of the art comprehensive review of individual statins, their differences, pharmacology, and clinical implications. Cardiovascular Drugs and Therapy. 2019; 33(5):1-15.
- Referans23 Strandberg TE. Role of statin therapy in primary prevention of cardiovascular disease in elderly patients. Current Atherosclerosis Reports. 2019; 21(8):28.
- Referans24 Abd TT, Jacobson TA. Statin-induced myopathy: a review and update. Expert Opinion on Drug Safety. 2011; 10(3):373-387.
Referans25 Robinson JG. Statins and diabetes risk: how real is it and what are the mechanisms. Current Opinion in Lipidology. 2015; 26(3):228-235.
- Referans26 Simic I, Reiner Z. Adverse effects of statins - Myths and reality. Current Pharmaceutical Design. 2015; 21(9):1220-1226.
- Referans27 Auer J, Sinzinger H, Franklin B, Berent, R. Muscle-and skeletal-related side-effects of statins: tip of the iceberg. European Journal of Preventive Cardiology. 2016; 23(1):88-110.
- Referans28 Bellosta S, Corsini A. Statin drug interactions and related adverse reactions. Expert Opinion on Drug Safety. 2012; 11(6):933-946.
Referans29 Yandrapalli S, Malik A, Guber K, Rochlani Y, Pemmasani G, Jasti M, Aronow WS. Statins and the potential for higher diabetes mellitus risk. Expert Review of Clinical Pharmacology. 2019; 12(9):825-830.
- Referans30 Pedro-Botet J, Climent E, Benaiges D. Muscle and statins: from toxicity to the nocebo effect. Expert Opinion on Drug Safety. 2019; 18(7):573-579.
- Referans31 Chen Y, Liu M, Zhao T, Zhao B, Jia L, Zhu Y, Xiang R. Danhong injection inhibits the development of atherosclerosis in both Apoe−/− and Ldlr−/− mice. Journal of Cardiovascular Pharmacology. 2014; 63(5):441-452.
- Referans32 Coelho MS, Soares-Freitas RAM, Arêas JAG, Gandra EA, Mercedes Salas-Mellado M. Peptides from chia present antibacterial activity and inhibit cholesterol synthesis. Plant Foods for Human Nutrition. 2018; 73(2):101-107.
- Referans33 Hanson JR. Diterpenoids. Natural Product Reports. 2006; 23(6):875-885.
- Referans34 Sashidhara KV, Singh SP, Srivastava A, Puri A, Chhonker YS, Bhatta RS, Siddiqi MI. Discovery of a new class of HMG-CoA reductase inhibitor from Polyalthia longifolia as potential lipid lowering agent. European Journal of Medicinal Chemistry. 2011; 46(10):5206-5211.
- Referans35 Halvorsen B, Ranheim T, Nenseter MS, Huggett AC, Drevon CA. Effect of a coffee lipid (cafestol) on cholesterol metabolism in human skin fibroblasts. Journal of Lipid Research. 1998; 39(4):901-912.
- Referans36 Lin SH, Huang KJ, Weng CF, Shiuan D. Exploration of natural product ıngredients as inhibitors of human HMG-CoA reductase through structure-based virtual screening. Drug Design Development and Therapy. 2015; 9:3313-3324.
- Referans37 Suganya S, Nandagopal B, Anbarasu A. Natural inhibitors of HMG‐CoA reductase - An in silico approach through molecular docking and simulation studies. Journal of Cellular Biochemistry. 2017; 118(1):52-57.
- Referans38 Kharazian N. Identification of flavonoids in leaves of seven wild growing Salvia L.(Lamiaceae) species from Iran. Progress in Biological Sciences. 2013; 3(2):81-98.
- Referans39 Rowshan V, Najafian S. Polyphenolic contents and antioxidant activities of aerial parts of Salvia multicaulis from the Iran flora. Natural Product Research. 2020; 34(16):2351-2353.
- Referans40 Chen TH, Liu JC, Chang JJ, Tsai MF, Hsieh MH, Chan P. The in vitro inhibitory effect of flavonoid astilbin on 3-hydroxy-3-methylglutaryl coenzyme A reductase on Vero cells. Chinese Medical Journal. 2001; 64(7):382-7.
- Referans41 Lee SH, Park YB, Bae KH, Bok SH, Kwon YK, Lee ES, Choi MS. Cholesterol-lowering activity of naringenin via inhibition of 3-hydroxy-3-methylglutaryl coenzyme A reductase and acyl coenzyme A: cholesterol acyltransferase in rats. Annals of Nutrition and Metabolism. 1999; 43(3):173-180.
- Referans42 Park YB, Do KM, Bok SH, Lee MK, Jeong TS, Choi MS. Interactive effect of hesperidin and vitamin E supplements on cholesterol metabolism in high cholesterol-fed rats. International Journal for Vitamin and Nutrition Research. 2001; 71(1):36-44.
- Referans43 Lee MK, Moon SS, Lee SE, Bok SH, Jeong TS, Park YB, Choi MS. Naringenin 7-O-cetyl ether as inhibitor of HMG-CoA reductase and modulator of plasma and hepatic lipids in high cholesterol-fed rats. Bioorganic & Medicinal Chemistry. 2003; 11(3):393-398.
- Referans44 Shin YW, Bok SH, Jeong TS, Bae KH, Jeoung NH, Choi MS, Park YB. Hypocholesterolemic effect of naringin associated with hepatic cholesterol regulating enzyme changes in rats. International Journal for Vitamin and Nutrition Research. 1999; 69(5):341-347.
- Referans45 Choi MS, Do KM, Park YB, Jeon SM, Jeong TS, Lee YK, Bok SH. Effect of naringin supplementation on cholesterol metabolism and antioxidant status in rats fed high cholesterol with different levels of vitamin E. Annals of Nutrition and Metabolism. 2001; 45(5):193-201.
- Referans46 Kim HJ, Oh GT, Park YB, Lee MK, Seo HJ, Choi MS. Naringin alters the cholesterol biosynthesis and antioxidant enzyme activities in LDL receptor-knockout mice under cholesterol fed condition. Life Sciences. 2004; 74(13):1621-1634.
- Referans47 Sung JH, Choi SJ, Lee SW, Park KH, Moon TW. Isoflavones found in Korean soybean paste as 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors. Bioscience Biotechnology and Biochemistry. 2004; 68(5):1051-1058.
- Referans48 Chung MJ, Sung NJ, Park CS, Kweon DK, Mantovani A, Moon TW, Park KH. Antioxidative and hypocholesterolemic activities of water-soluble puerarin glycosides in HepG2 cells and in C57 BL/6J mice. European Journal of Pharmacology. 2008; 578(2-3):159-170.
- Referans49 Leopoldini M, Malaj N, Toscano M, Sindona G, Russo N. On the inhibitor effects of bergamot juice flavonoids binding to the 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) enzyme. Journal of Agricultural and Food Chemistry. 2010; 58(19):10768-10773.
- Referans50 Kwon EK, Lee DY, Lee H, Kim DO, Baek NI, Kim YE, Kim HY. Flavonoids from the buds of Rosa damascena inhibit the activity of 3-hydroxy-3-methylglutaryl-coenzyme a reductase and angiotensin I-converting enzyme. Journal of Agricultural and Food Chemistry. 2010; 58(2):882-886.
- Referans51 Tuansulong KA, Hutadilok‐Towatana N, Mahabusarakam W, Pinkaew D, Fujise K. Morelloflavone from Garcinia dulcis as a novel biflavonoid inhibitor of HMG‐CoA reductase. Phytotherapy Research. 2011, 25(3):424-428.
- Referans52 Anandhi R, Thomas PA, Geraldine P. Evaluation of the anti-atherogenic potential of chrysin in Wistar rats. Molecular and Cellular Biochemistry. 2014; 385(1-2):103-113.
- Referans53 Niu H, Chao Y, Li K, Li J, Gong W, Huang W. Robinetinidol flavone attenuates cholesterol synthesis in hepatoma cells via inhibition of 3 hydroxy 3 methylglutaryl coenzyme A reductase. Molecular Medicine Reports. 2015; 11(1):561-566.
- Referans54 Haque MW, Bose P, Siddique MUM, Sunita P, Lapenna A, Pattanayak SP. Taxifolin binds with LXR (α & β) to attenuate DMBA-induced mammary carcinogenesis through mTOR/Maf-1/PTEN pathway. Biomedicine & Pharmacotherapy. 2018; 105:27-36.