Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2021, Cilt: 2 Sayı: 1, 57 - 67, 01.05.2021
https://doi.org/10.5281/zenodo.4843418

Öz

Kaynakça

  • [1] Koshy, T. (2001). Fibonacci and Lucas Numbers with Aplications. Pure and Applied Mathematics, Canada: John Wiley and Sons, Interscience, 1-500.
  • [2] Grigas, A. (2013). The Fibonacci Sequence, Its history, significance and manifestations in Nature. A Senior Thesis Submitted in Partial Fulfillment of the Requirements for Graduation in the Honors Program, Liberty University, 1-35.
  • [3] Posamentier, A.S. and I. Lehmann (2007). The (fabulaus) Fibonacci numbers. Amherst, New York: Prometheus Books, 299-305.
  • [4] Catalani, M. (2004). Some formula for bivariate Fibonacci and Lucas polynomials. ArXiv: Math/0406323v1 [Math. CO].
  • [5] Hoggatt, V.E. Jr. and Bicknell M. (1972). Convolution Triangles. The Fibonacci Quarterly, 10(6), 599-608.
  • [6] Lupas, A. (1999). A guide of Fibonacci and Lucas polynomials. Octagon Mathematics Magazine, 7(1), 2-12.
  • [7] Feinberg, M. (1963). Fibonacci-Tribonacci. The Fibonacci Quarterly, (3), 70-74. [6] Lupas, A. (1999). A guide of Fibonacci and Lucas polynomials. Octagon Mathematics Magazine, 7(1), 2-12.
  • [8] Hoggatt, V.E. Jr. and Bicknell M. (1972). Convolution Triangles. The Fibonacci Quarterly, 10(6), 599-608.
  • [9] Hoggatt, V.E. Jr. and M. Bicknell (1973). Generalized Fibonacci polynomials. Fibonacci Quarterly, 11(5), 457-465.
  • [10] Elia, M. (2001). Derived sequences, the Tribonacci recurrence and cubic forms. The Fibonacci Quarterly, 39(2), 107-109.
  • [11] Kocer, E. G. and Gedikce, H. (2016). Trivariate Fibonacci and Lucas polynomials. Konuralp Journal of Mathematics, 4(2), 247-254.
  • [12] Erkuş-Duman, E. And Tuğlu, N. (2015). Generating functions for the generalized bivariate Fibonacci and Lucas polynomials. Journal of Computational Analysis and Aplications, 18(5), 815-821.
  • [13] Kızılateş, C. and Çekim, B. (2018). New families of generating functions for q-Fibonacci and the related polynomials. Ars Combinatoria, 136, 397-404.
  • [14] Kızılateş, C. and Tuğlu, N. (2017). A new generalization of convolved (p, q)-Fibonacci and (p, q)- Lucas polynomials. Journal of Mathematics and Computer Science. 7(6), 995-1005.
  • [15] Tuğlu, N., E.G., Koçer and Stakhov, A. (2011). Bivariate Fibonacci like p-polynomials. Applied Mathematics and Computation, 217(24), 10239-10246.
  • [16] Ozdemir, G. and Simsek, Y. (2016). Generating functions for two-variable polynomials related to a family of Fibonacci type polynomials and numbers. Filomat, 30(4), 969-975.
  • [17] Ozdemir, G. (2017). Çok Değişkenli Fibonacci Tipli Polinomlar İçin Üreteç Fonksiyonları ve Uygulamaları, Doktora Tezi, Akdeniz Üniversitesi Fen Bilimleri Enstitüsü, Antalya, 52-67.
  • [18] Kızılateş, C., Çekim, B., Tuğlu, Naim., Kim, T. (2019). New families of three-variable polynomials coupled with well-known polynomials and numbers. Symmetry, 11(2), 264.
  • [19] Humbert, P. (1920). Some Extensions of Pincherle’s Polynomials. Proceedings of the Edinburg Mathematical Society, 39, 21-24.
  • [20] Bell, W.W. (1968). Special Function for Scientist and Engineer. London: D. Van Nostrand Company Ltd., 247p.
  • [21] Srivastava, H.M. and Manocha, H.L. (1984). A Treatise on Generating Functions. New York, USA: Ellis Harwood Limited.

Üç Değişkenli Fibonacci Tipli Polinomlar için Doğurucu Fonksiyonlar ve Bazı Özellikleri

Yıl 2021, Cilt: 2 Sayı: 1, 57 - 67, 01.05.2021
https://doi.org/10.5281/zenodo.4843418

Öz

Bu çalışmada ilk olarak iyi bilinen bazı polinom ailelerinin ve özel sayıların tanımlarına yer verilmiştir. Daha sonra Fibonacci tipli polinom ve sayı ailelerini içeren yeni doğurucu fonksiyonlar tanıtılmıştır. Bu polinom
ailelerinin açık gösterimi ve doğurucu fonksiyonlarının kısmi türevleri ile bu ailelerin rekürans bağıntıları elde edilmiştir.

Kaynakça

  • [1] Koshy, T. (2001). Fibonacci and Lucas Numbers with Aplications. Pure and Applied Mathematics, Canada: John Wiley and Sons, Interscience, 1-500.
  • [2] Grigas, A. (2013). The Fibonacci Sequence, Its history, significance and manifestations in Nature. A Senior Thesis Submitted in Partial Fulfillment of the Requirements for Graduation in the Honors Program, Liberty University, 1-35.
  • [3] Posamentier, A.S. and I. Lehmann (2007). The (fabulaus) Fibonacci numbers. Amherst, New York: Prometheus Books, 299-305.
  • [4] Catalani, M. (2004). Some formula for bivariate Fibonacci and Lucas polynomials. ArXiv: Math/0406323v1 [Math. CO].
  • [5] Hoggatt, V.E. Jr. and Bicknell M. (1972). Convolution Triangles. The Fibonacci Quarterly, 10(6), 599-608.
  • [6] Lupas, A. (1999). A guide of Fibonacci and Lucas polynomials. Octagon Mathematics Magazine, 7(1), 2-12.
  • [7] Feinberg, M. (1963). Fibonacci-Tribonacci. The Fibonacci Quarterly, (3), 70-74. [6] Lupas, A. (1999). A guide of Fibonacci and Lucas polynomials. Octagon Mathematics Magazine, 7(1), 2-12.
  • [8] Hoggatt, V.E. Jr. and Bicknell M. (1972). Convolution Triangles. The Fibonacci Quarterly, 10(6), 599-608.
  • [9] Hoggatt, V.E. Jr. and M. Bicknell (1973). Generalized Fibonacci polynomials. Fibonacci Quarterly, 11(5), 457-465.
  • [10] Elia, M. (2001). Derived sequences, the Tribonacci recurrence and cubic forms. The Fibonacci Quarterly, 39(2), 107-109.
  • [11] Kocer, E. G. and Gedikce, H. (2016). Trivariate Fibonacci and Lucas polynomials. Konuralp Journal of Mathematics, 4(2), 247-254.
  • [12] Erkuş-Duman, E. And Tuğlu, N. (2015). Generating functions for the generalized bivariate Fibonacci and Lucas polynomials. Journal of Computational Analysis and Aplications, 18(5), 815-821.
  • [13] Kızılateş, C. and Çekim, B. (2018). New families of generating functions for q-Fibonacci and the related polynomials. Ars Combinatoria, 136, 397-404.
  • [14] Kızılateş, C. and Tuğlu, N. (2017). A new generalization of convolved (p, q)-Fibonacci and (p, q)- Lucas polynomials. Journal of Mathematics and Computer Science. 7(6), 995-1005.
  • [15] Tuğlu, N., E.G., Koçer and Stakhov, A. (2011). Bivariate Fibonacci like p-polynomials. Applied Mathematics and Computation, 217(24), 10239-10246.
  • [16] Ozdemir, G. and Simsek, Y. (2016). Generating functions for two-variable polynomials related to a family of Fibonacci type polynomials and numbers. Filomat, 30(4), 969-975.
  • [17] Ozdemir, G. (2017). Çok Değişkenli Fibonacci Tipli Polinomlar İçin Üreteç Fonksiyonları ve Uygulamaları, Doktora Tezi, Akdeniz Üniversitesi Fen Bilimleri Enstitüsü, Antalya, 52-67.
  • [18] Kızılateş, C., Çekim, B., Tuğlu, Naim., Kim, T. (2019). New families of three-variable polynomials coupled with well-known polynomials and numbers. Symmetry, 11(2), 264.
  • [19] Humbert, P. (1920). Some Extensions of Pincherle’s Polynomials. Proceedings of the Edinburg Mathematical Society, 39, 21-24.
  • [20] Bell, W.W. (1968). Special Function for Scientist and Engineer. London: D. Van Nostrand Company Ltd., 247p.
  • [21] Srivastava, H.M. and Manocha, H.L. (1984). A Treatise on Generating Functions. New York, USA: Ellis Harwood Limited.
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Araştırma Makaleleri
Yazarlar

Zeynep Özat 0000-0001-7896-5951

Bayram Çekim 0000-0002-5363-2453

Yayımlanma Tarihi 1 Mayıs 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 2 Sayı: 1

Kaynak Göster

APA Özat, Z., & Çekim, B. (2021). Üç Değişkenli Fibonacci Tipli Polinomlar için Doğurucu Fonksiyonlar ve Bazı Özellikleri. Gazi Üniversitesi Fen Fakültesi Dergisi, 2(1), 57-67. https://doi.org/10.5281/zenodo.4843418
AMA Özat Z, Çekim B. Üç Değişkenli Fibonacci Tipli Polinomlar için Doğurucu Fonksiyonlar ve Bazı Özellikleri. GÜFFD. Mayıs 2021;2(1):57-67. doi:10.5281/zenodo.4843418
Chicago Özat, Zeynep, ve Bayram Çekim. “Üç Değişkenli Fibonacci Tipli Polinomlar için Doğurucu Fonksiyonlar Ve Bazı Özellikleri”. Gazi Üniversitesi Fen Fakültesi Dergisi 2, sy. 1 (Mayıs 2021): 57-67. https://doi.org/10.5281/zenodo.4843418.
EndNote Özat Z, Çekim B (01 Mayıs 2021) Üç Değişkenli Fibonacci Tipli Polinomlar için Doğurucu Fonksiyonlar ve Bazı Özellikleri. Gazi Üniversitesi Fen Fakültesi Dergisi 2 1 57–67.
IEEE Z. Özat ve B. Çekim, “Üç Değişkenli Fibonacci Tipli Polinomlar için Doğurucu Fonksiyonlar ve Bazı Özellikleri”, GÜFFD, c. 2, sy. 1, ss. 57–67, 2021, doi: 10.5281/zenodo.4843418.
ISNAD Özat, Zeynep - Çekim, Bayram. “Üç Değişkenli Fibonacci Tipli Polinomlar için Doğurucu Fonksiyonlar Ve Bazı Özellikleri”. Gazi Üniversitesi Fen Fakültesi Dergisi 2/1 (Mayıs 2021), 57-67. https://doi.org/10.5281/zenodo.4843418.
JAMA Özat Z, Çekim B. Üç Değişkenli Fibonacci Tipli Polinomlar için Doğurucu Fonksiyonlar ve Bazı Özellikleri. GÜFFD. 2021;2:57–67.
MLA Özat, Zeynep ve Bayram Çekim. “Üç Değişkenli Fibonacci Tipli Polinomlar için Doğurucu Fonksiyonlar Ve Bazı Özellikleri”. Gazi Üniversitesi Fen Fakültesi Dergisi, c. 2, sy. 1, 2021, ss. 57-67, doi:10.5281/zenodo.4843418.
Vancouver Özat Z, Çekim B. Üç Değişkenli Fibonacci Tipli Polinomlar için Doğurucu Fonksiyonlar ve Bazı Özellikleri. GÜFFD. 2021;2(1):57-6.