Laktitolün Genotoksik ve Sitotoksik Etkilerinin İncelenmesi
Yıl 2022,
Cilt: 3 Sayı: 2, 133 - 143, 25.11.2022
Ece Avuloğlu Yılmaz
,
Sevcan Mamur
,
Esra Erikel
,
Deniz Yüzbaşıoğlu
,
Fatma Ünal
Öz
Laktitol bir poliol (şeker alkolü) olup tatlandırıcı olarak kullanılan bir gıda katkı maddesidir. Tatlılar, sakızlar, hamur işleri ve ekmekler gibi sık tüketilen gıdalarda bulunmakla birlikte bazı farmasötiklerde de bulunmaktadır. Kullanımları sürekli artan gıda katkı maddelerinin sağlığa olan etkileri de çokça tartışılmaktadır. Genotoksisite, biyolojik, fiziksel veya kimyasal herhangi bir ajanın DNA hasarına neden olabilme potansiyeli olarak tanımlanır ve söz konusu hasarın mutasyona neden olabileceği kabul edilmektedir. Sitotoksisite testleri, maddelerin çeşitli dokulara ya da hücrelere toksisitesini belirlemek için kullanılır. Bu çalışmada, laktitolün genotoksik ve sitotoksik etkisini değerlendirmek amacıyla comet ve MTT testleri kullanılmıştır. Comet testi sağlıklı iki donörden alınan kan örneklerinden izole edilen lenfositlerde, MTT testi ise BHK-21 An 31 yavru hamster böbrek hücrelerinde gerçekleştirilmiştir. Hücrelere laktitolün (125 µg/mL sadece MTT testinde), 250, 500, 1000, 2000 ve 4000 µg/mL’lik konsantrasyonlarıyla comet testinde 1 saat, MTT testinde 24 saat muamele edilmiştir. Sonuçta laktitolün önemli bir genotoksik ve sitotoksik etki göstermediği tespit edilmiştir. Ancak bu sonuçların farklı test yöntemleri ve hücre grupları ile desteklenmesi gereklidir.
Teşekkür
BHK-21 An 31 yavru hamster böbrek hücrelerinin temini için Dr. Şükran Yılmaz’a teşekkürlerimi sunarım.
Kaynakça
- [1] Ishidate Jr, M., Sofuni, T., Yoshikawa, K., Hayashi, M., Nohmi, T., Sawada, M., and Matsuoka, A. (1984). Primary
mutagenicity screening of food additives currently used in Japan. Food and Chemical Toxicology, 22(8), 623-636.
- [2] Linke, B. G., Casagrande, T. A. and Cardoso, L. I. A. (2018). Food additives and their health effects: a review on
preservative sodium benzoate. African Journal of Biotechnology, 17(10), 306-310.
- [3] Wu, L., Zhang, C., Long, Y., Chen, Q., Zhang, W., and Liu, G. (2021). Food additives: from functions to analytical
methods. Critical Reviews in Food Science and Nutrition, 1-21.
- [4] Naik, A. Q., Zafar, T., and Shrivastava, V. K. (2021). Environmental impact of the presence, distribution, and use
of artificial sweeteners as emerging sources of pollution. Journal of Environmental and Public Health, 6624569.
- [5] Kokotou, M. G., Asimakopoulos, A. G. and Thomaidis, N. S. (2012). Sweeteners. Food Analysis by HPLC. CRC
Press, 22-44.
- [6] Altuğ, T., ve Elmacı, Y. (2009). Tatlandırıcılar. Gıda Katkı Maddeleri. Kan Yılmaz Matbaacılık. 201-223.
- [7] Scettri, A., and Schievano, E. (2022). Quantification of polyols in sugar-free foodstuffs by qNMR. Food
Chemistry, 390, 133125.
- [8] Ünal, D. (2011). Farklı oranlarda laktitol ve sakkaroz ilavesiyle hazırlanan tekirdağ peynir helvalarının bazı
özelliklerinin belirlenmesi, Yüksek Lisans Tezi, Namık Kemal Üniversitesi Fen Bilimleri Enstitüsü. Tekirdağ.
- [9] Li, H., Song, W., Liu, T., Xu, S., Zhang, S., Zhang, Y., Liu, D., Li, H., and Yu, J. (2022). Developing novel
synbiotic yoghurt with Lacticaseibacillus paracasei and lactitol: investigation of the microbiology, textural and
rheological properties. International Dairy Journal, 135, 105475.
- [10] Siivola, K. K., Burgum, M. J., Suárez-Merino, B., Clift, M. J., Doak, S. H., and Catalán, J. (2022). A systematic
quality evaluation and review of nanomaterial genotoxicity studies: a regulatory perspective. Particle and Fibre
Toxicology, 19(1), 1-24.
- [11] Akagi, J. I., Yokoi, M., Cho, Y. M., Toyoda, T., Ohmori, H., Hanaoka, F., and Ogawa, K. (2018). Hypersensitivity
of mouse embryonic fibroblast cells defective for DNA polymerases η, ι and κ to various genotoxic compounds: its
potential for application in chemical genotoxic screening. DNA Repair, 61, 76-85.
- [12] Cordelli, E., Bignami, M., and Pacchierotti, F. (2021). Comet assay: a versatile but complex tool in genotoxicity
testing. Toxicology Research, 10(1), 68-78.
- [13] Ünal, F., Saygılı, Y., ve Dimici, E. (2022). Kuyruklu Yıldız/Komet Testi. Genetik Toksikoloji. Nobel Akademik
Yayıncılık. 313-340.
- [14] Ghasemi, M., Turnbull, T., Sebastian, S., and Kempson, I. (2021). The MTT assay: utility, limitations, pitfalls,
and interpretation in bulk and single-cell analysis. International Journal of Molecular Sciences, 22(23), 12827.
- [15] Tolosa, L., Donato, M. T., and Gómez-Lechón, M. J. (2015). General cytotoxicity assessment by means of the
MTT assay. Protocols in in vitro Hepatocyte Research, 333-348.
- [16] Mamur, S. Sitotoksiste Testleri. Genetik Toksikoloji. Nobel Akademik Yayıncılık, 31-40.
- [17] İnternet: Sigma-Aldirich URL: https://www.sigmaaldrich.com/TR/en/product/sigma/l3520 Son Erişim tarihi:
07.10.2022
- [18] Singh, N.P., McCoy, M.T., Tice, R.R. and Schneider, E.L. (1988). A simple technique for quantitation of low
levels of DNA damage in individual cells. Experimental Cell Research, 175(1), 184-191.
- [19] Avuloğlu-Yılmaz, E., Yüzbaşıoğlu, D., Özçelik, A. B., Ersan, S., and Ünal, F. (2017). Evaluation of genotoxic
effects of 3-methyl-5-(4-carboxycyclohexylmethyl)-tetrahydro-2H-1, 3, 5-thiadiazine-2-thione on human peripheral
lymphocytes. Pharmaceutical Biology, 55(1), 1228-1233.
- [20] Mossman, T. (1983). Rapid colometric assay for cellular growth and survival: application to proliferation and
cytotoxicity assays. Journal of Immunological Methods, 65, 55-63.
- [21] JECFA. (1983). Evaluations of the Joint FAO/WHO Expert Committe on Food Additives. JECFA Evaluations.
- [22] Chung, Y. S., and Lee, M. (2013). Genotoxicity assessment of erythritol by using short-term assay. Toxicological
Research, 29(4), 249.
- [23] Canımoğlu, S., and Rencüzoğulları, E. (2006). The cytogenetic effects of food sweetener maltitol in human
peripheral lymphocytes. Drug and Chemical Toxicology, 29(3), 269-278.
- [24] Matsui, M., Matsui, K., Kawasaki, Y., Oda, Y., Noguchi, T., Kitagawa, Y., Sawada, M., Hayashi, M., Nohmi,
T., Yoshihira, K., Ishidate, M. Jr., and Sofuni, T. (1996). Evaluation of the genotoxicity of stevioside and steviol using
six in vitro and one in vivo mutagenicity assays. Mutagenesis, 11(6), 573-579.
- [25] Pezzuto, J.M., Compadre, C.M., Swanson, S.M., Nanayakkara, N.P.D. and Kinghorn, A.D. (1985). Metabolically
activated steviol, the aglycone of stevioside, is mutagenic. Proceedings of the National Academy Science of the United
States of America, 82, 2478–2482.
- [26] Pezzuto, J.M., Nanayakkara, N.P.D., Compadre, C.M., Swanson, S.M., Kinghorn, A.D., Guenthner, T.M.,
Sparnins, V.L., and Lam, L.K.T. (1986). Characterization of bacterial mutagenicity mediated by 13-hydroxy-entkaurenoic acid (steviol) and several structurally-related derivatives and evaluation of potential to induce glutathione s-transferase in mice. Mutation Research, 169, 93–103.
- [27] Oh, H. Y., Han, E. S., Choi, D. W., Kim, J. W., Eom, M. O., Kang, I. H., Kang, H. J., and Ha, K. W. (1999). In
vitro and ın vivo evaluation of genotoxicity of stevioside and steviol, natural sweetner. Journal Pharmaceutical
Society of Korea, 43, 614-622.
- [28] Temcharoen, P., Suwannatrai, M., Klongpanichpak, S., Apibal, S., Glinsukon, T., and Toskulkao, C. (2000).
Evaluation of the effect of steviol on chromosomal damage using micronucleus test in three laboratory animal species.
Journal of the Medical Association of Thailand Chotmaihet Thangphaet, 83, 101-108.
- [29] Uçar, A., Yılmaz, S., Yılmaz, Ş., and Kılıç, M. S. (2018). A research on the genotoxicity of stevia in human
lymphocytes. Drug and Chemical Toxicology, 41 (2), 221-224.
- [30] Sekihashi, K., Saitoh, H., and Sasaki, Y. (2002). Genotoxicity studies of stevia extract and steviol by the comet
assay. The Journal of Toxicological Sciences, 27, 1-8.
- [31] Sasaki, Y.F., Kawaguchi, S., Kamaya, A., Ohshita, M., Kabasawa, K., Iwama, K., Taniguchi, K., and Tsuda, S.,
(2002). The comet assay with 8 mouse organs: results with 39 currently used food additives. Mutation Research, 519,
103–119.
- [32] Suttajit, M., Vinitketkaumnuen, U., Meevatee, U., and Buddhasukh, D. (1993). Mutagenicity and human
chromosomal effect of stevioside, a sweetener from stevia rebaudiana bertoni. Environmental Health Perspectives,
101(3), 53-56.
- [33] Terai, T., Ren, H., Mori, G., Yamaguchi, Y., and Hayashi, T. (2002). Mutagenicity of steviol and its oxidative
derivatives in Salmonella typhimurium Tm677. Chemical and. Pharmaceutical Bulletin, 50, 1007–1010.
- [34] Nunes, A. P. M., Ferreira-Machado, S. C., Nunes, R. M., Dantas, F. J. S., De Mattos, J. C. P., and Caldeira-deAraujo, A. (2007). Analysis of genotoxic potentiality of stevioside by comet assay. Food and Chemical Toxicology,45(4), 662-666.
- [35] Williams, L. D., and Burdock, G. A. (2009). Genotoxicity studies on a high-purity rebaudioside a preparation.
Food and Chemical Toxicology, 47(8), 1831-1836.
- [36] Wu, X., Wang, B., Chen, T., Gan, M., Chen, X., Chen, F., Wei, H., nd Xu, F. (2014). The non-cytotoxicity
characterization of rebaudioside A as a food additive. Food and Chemical Toxicology, 66, 334-340.
- [37] Çadirci, K., Tozlu, Ö. Ö., Türkez, H., and Mardinoğlu, A. (2020). The in vitro cytotoxic, genotoxic, and oxidative
damage potentials of the oral artificial sweetener aspartame on cultured human blood cells. Turkish Journal of Medical
Sciences, 50(2), 448-454.
- [38] Van Eyk, A. D. (2015). The effect of five artificial sweeteners on Caco-2, HT-29 and HEK-293 cells. Drug and
Chemical Toxicology, 38(3), 318-327.
- [39] Mamur, S., Yüzbaşıoğlu, D., Bülbül, S.N., ve Ünal, F. (2022). Investigation of cyto-genotoxic effects of a food
sweetener Acesulfame potassium. Food Health, 8(4), 273-283.
- [40] Toews I, Lohner S, de Gaudry DK, Sommer H, and Meerpohl J. J. (2019). Association between intake of nonsugar sweeteners and health outcomes: systematic review and meta-analyses of randomised and non-randomised controlled trials and observational studies. British Medical Journal, 364, 4718.
- [41] Laviada‐Molina, H., Molina‐Segui, F., Pérez‐Gaxiola, G., Cuello‐García, C., Arjona‐Villicaña, R., Espinosa‐
Marrón, A., and Martinez‐Portilla, R. J. (2020). Effects of nonnutritive sweeteners on body weight and BMI in diverse
clinical contexts: Systematic review and meta‐analysis. Obesity Reviews, 21(7), e13020.
- [42] Pang, M. D., Goossens, G. H., and Blaak, E. E. (2021). The impact of artificial sweeteners on body weight control
and glucose homeostasis. Frontiers in Nutrition, 7, 598340.
- [43] Azad, M. B., Abou-Setta, A. M., Chauhan, B. F., Rabbani, R., Lys, J., Copstein, L., Mann, A., Jeyaraman, M.
M., Reid A. Y., Fiander, M., MacKay, D. S., McGavock, J., Wicklow, B., and Zarychanski, R. (2017). Nonnutritive
sweeteners and cardiometabolic health: a systematic review and meta-analysis of randomized controlled trials and
prospective cohort studies. Canadian Medical Association Journal, 189(28), 929-939.
- [44] Debras, C., Chazelas, E., Srour, B., Druesne-Pecollo, N., Esseddik, Y., de Edelenyi, F. S., Agae¨sse, C., e De Sa,
A., Lutchia, R., Gigandet, S., Huybrechts, I., Julia, C., Kesse-Guyo, E., Allès, B., Andreeva, V. A., Galan, P.,
Hercberg, S., Deschasaux-TanguyI, M., and Touvier, M. (2022). Artificial sweeteners and cancer risk: results from
the nutriNet-santé population-based cohort study. PLoS Medicine, 19(3), e1003950