Research Article
BibTex RIS Cite
Year 2016, Volume: 29 Issue: 1, 129 - 133, 21.03.2016

Abstract

References

  • Mustafa, Z. and Sims, B., “A new approach to generalized metric spaces”, J. Nonlinear Convex Anal.,7, no. 2: 289-297, (2006).
  • Abbas, M., Shatanawi, W. and Nazir, T., “Common coupled coincidence and coupled fixed point of C- contractive mappings in generalized metric spaces”, Thai Journal of Mathematics, 13 (2): 339-353 (2015).
  • Gu, F. and Shatanawi, W., “Common fixed point for generalized weakly G-contraction mappings satisfying com- mon (E.A) property in G-metric spaces”, Fixed Point Theory and Applications, 2013:309, 1-15, (2013).
  • Aydi, H., Shatanawi, W. and Vetro, G., “On generalized weakly G-contraction mapping in G- metric spaces”, Comput.Math. Appl., 62:4222– 4229, (2011).
  • Mustafa, Z. and Sims, B., “Fixed Point Theorems for contractive Mappings in Complete G-Metric Spaces”, Fixed Point Theory Appl., Hindawi Publishing Corporation, ID 917175, 10 pages, (2009).
  • Mustafa, Z., Obedat, H. and Awawdeh, F., “Some fixed point theorems for mapping on complete G- metric spaces”, Fixed Point Theory and Applications, 2008, Artcle ID 189870, 12 pages, (2008).
  • Mustafa, Z., Shatanawi, W. and Bataineh, M., “Existence of fixed point results in G-metric spaces”, International Jornal of Mathematics and Mathematical Sciences, Artcle ID 283028, 10 pages, (2009).
  • Shatanawi, W., Chauhan, S.,Postolache, M., Abbas, M. and Radenovic, S., “Common fixed points for contractive mappings of integral type in G-metric space”, J. Adv. Math. Stud., 6(1): 53–72, (2013).
  • Shatanawi, W. and Abbas, M., “Some fixed point results for multi valued mappings in ordered G- metric spaces”, Gazi University Journal of Science, 25: 385-392 (2012)
  • Shatanawi, W. and Postolache, M., “Some fixed point results for a G-weak contraction in G-metric spaces”, Abstract and Applied Analysis, Article ID 815870, 19 pages, (2012).
  • Jleli, M. and Samet, B., “Remarks on G -metric spaces and fixed point theorems”, Fixed Point Theory Appl., Article ID 210, (2012).
  • Samet, B., Vetro, C. and Vetro, F., “Remarks on G -metric spaces”, Int. J. Anal., Article ID 917158 (2013).
  • Saadati, R., Vaezpour, S. M., Vetro, P. and Rhoades, B. E., “Fixed point theorems in generalized partially ordered G-metric spaces”, Mathematical and Computer Modeling, 52: 797– 801, (2010).
  • Gholizadeh, L., Saadati, R., Shatanawi, W. and Vaezpour, S. M., “Contractive mapping in generalized, ordered metric spaces with application in integral equations”, Math. Probl. Eng., Article ID 380784 (2011).
  • Shatanawi, W. and Pitea, A., “Fixed and coupled fixed point theorems of Ω-distance for nonlinear contraction”, Applications, 2013:275, (2013). Theory and
  • Shatanawi, W., Bataihah, A. and Pitea, A., “Fixed and common fixed point results for cyclic mappings of Ω-distance”, J. Nonlinear Sci. Appl., 9: 727– 735, (2016).
  • Shatanawi, W. and Pitea, A., “Ω-Distance and coupled fixed point in G-metric spaces”, Fixed Point Theory and Applications, 2013:208, (2013).
  • Suzuki, T., “A generalized Banach contraction principle that characterizes metric completeness”, Proc. Amer. Math.Soc., bf 136, 1861–1869,(2008).
  • Khan, M. S., Swaleh, M. and Sessa, S., “Fixed point theorems by altering distances between the points”, Bull. Aust.Math. Soc., 30:1–9, (1984).

Fixed Point Theorem Through Ω-distance of Suzuki Type Contraction Condition

Year 2016, Volume: 29 Issue: 1, 129 - 133, 21.03.2016

Abstract

In this article, we utilize the notion of $\Omega$-distance in the sense of Saadati et al [R. Saadati, S.M. Vaezpour, P. Vetro and B.E. Rhoades, Fixed point theorems in generalized partially ordered G-metric spaces, {\it Mathematical and Computer Modeling,} \textbf{52}, 797-801, 2010] to introduce and prove some fixed point results of self-mapping under contraction conditions of the form $\Omega$-Suzuki-contractions.

References

  • Mustafa, Z. and Sims, B., “A new approach to generalized metric spaces”, J. Nonlinear Convex Anal.,7, no. 2: 289-297, (2006).
  • Abbas, M., Shatanawi, W. and Nazir, T., “Common coupled coincidence and coupled fixed point of C- contractive mappings in generalized metric spaces”, Thai Journal of Mathematics, 13 (2): 339-353 (2015).
  • Gu, F. and Shatanawi, W., “Common fixed point for generalized weakly G-contraction mappings satisfying com- mon (E.A) property in G-metric spaces”, Fixed Point Theory and Applications, 2013:309, 1-15, (2013).
  • Aydi, H., Shatanawi, W. and Vetro, G., “On generalized weakly G-contraction mapping in G- metric spaces”, Comput.Math. Appl., 62:4222– 4229, (2011).
  • Mustafa, Z. and Sims, B., “Fixed Point Theorems for contractive Mappings in Complete G-Metric Spaces”, Fixed Point Theory Appl., Hindawi Publishing Corporation, ID 917175, 10 pages, (2009).
  • Mustafa, Z., Obedat, H. and Awawdeh, F., “Some fixed point theorems for mapping on complete G- metric spaces”, Fixed Point Theory and Applications, 2008, Artcle ID 189870, 12 pages, (2008).
  • Mustafa, Z., Shatanawi, W. and Bataineh, M., “Existence of fixed point results in G-metric spaces”, International Jornal of Mathematics and Mathematical Sciences, Artcle ID 283028, 10 pages, (2009).
  • Shatanawi, W., Chauhan, S.,Postolache, M., Abbas, M. and Radenovic, S., “Common fixed points for contractive mappings of integral type in G-metric space”, J. Adv. Math. Stud., 6(1): 53–72, (2013).
  • Shatanawi, W. and Abbas, M., “Some fixed point results for multi valued mappings in ordered G- metric spaces”, Gazi University Journal of Science, 25: 385-392 (2012)
  • Shatanawi, W. and Postolache, M., “Some fixed point results for a G-weak contraction in G-metric spaces”, Abstract and Applied Analysis, Article ID 815870, 19 pages, (2012).
  • Jleli, M. and Samet, B., “Remarks on G -metric spaces and fixed point theorems”, Fixed Point Theory Appl., Article ID 210, (2012).
  • Samet, B., Vetro, C. and Vetro, F., “Remarks on G -metric spaces”, Int. J. Anal., Article ID 917158 (2013).
  • Saadati, R., Vaezpour, S. M., Vetro, P. and Rhoades, B. E., “Fixed point theorems in generalized partially ordered G-metric spaces”, Mathematical and Computer Modeling, 52: 797– 801, (2010).
  • Gholizadeh, L., Saadati, R., Shatanawi, W. and Vaezpour, S. M., “Contractive mapping in generalized, ordered metric spaces with application in integral equations”, Math. Probl. Eng., Article ID 380784 (2011).
  • Shatanawi, W. and Pitea, A., “Fixed and coupled fixed point theorems of Ω-distance for nonlinear contraction”, Applications, 2013:275, (2013). Theory and
  • Shatanawi, W., Bataihah, A. and Pitea, A., “Fixed and common fixed point results for cyclic mappings of Ω-distance”, J. Nonlinear Sci. Appl., 9: 727– 735, (2016).
  • Shatanawi, W. and Pitea, A., “Ω-Distance and coupled fixed point in G-metric spaces”, Fixed Point Theory and Applications, 2013:208, (2013).
  • Suzuki, T., “A generalized Banach contraction principle that characterizes metric completeness”, Proc. Amer. Math.Soc., bf 136, 1861–1869,(2008).
  • Khan, M. S., Swaleh, M. and Sessa, S., “Fixed point theorems by altering distances between the points”, Bull. Aust.Math. Soc., 30:1–9, (1984).
There are 19 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Mathematics
Authors

Wasfi Ahmed Shatanawi

Kamal K. Abodaye

Anwer Bataihah This is me

Publication Date March 21, 2016
Published in Issue Year 2016 Volume: 29 Issue: 1

Cite

APA Shatanawi, W. A., K. Abodaye, K., & Bataihah, A. (2016). Fixed Point Theorem Through Ω-distance of Suzuki Type Contraction Condition. Gazi University Journal of Science, 29(1), 129-133.
AMA Shatanawi WA, K. Abodaye K, Bataihah A. Fixed Point Theorem Through Ω-distance of Suzuki Type Contraction Condition. Gazi University Journal of Science. March 2016;29(1):129-133.
Chicago Shatanawi, Wasfi Ahmed, Kamal K. Abodaye, and Anwer Bataihah. “Fixed Point Theorem Through Ω-Distance of Suzuki Type Contraction Condition”. Gazi University Journal of Science 29, no. 1 (March 2016): 129-33.
EndNote Shatanawi WA, K. Abodaye K, Bataihah A (March 1, 2016) Fixed Point Theorem Through Ω-distance of Suzuki Type Contraction Condition. Gazi University Journal of Science 29 1 129–133.
IEEE W. A. Shatanawi, K. K. Abodaye, and A. Bataihah, “Fixed Point Theorem Through Ω-distance of Suzuki Type Contraction Condition”, Gazi University Journal of Science, vol. 29, no. 1, pp. 129–133, 2016.
ISNAD Shatanawi, Wasfi Ahmed et al. “Fixed Point Theorem Through Ω-Distance of Suzuki Type Contraction Condition”. Gazi University Journal of Science 29/1 (March 2016), 129-133.
JAMA Shatanawi WA, K. Abodaye K, Bataihah A. Fixed Point Theorem Through Ω-distance of Suzuki Type Contraction Condition. Gazi University Journal of Science. 2016;29:129–133.
MLA Shatanawi, Wasfi Ahmed et al. “Fixed Point Theorem Through Ω-Distance of Suzuki Type Contraction Condition”. Gazi University Journal of Science, vol. 29, no. 1, 2016, pp. 129-33.
Vancouver Shatanawi WA, K. Abodaye K, Bataihah A. Fixed Point Theorem Through Ω-distance of Suzuki Type Contraction Condition. Gazi University Journal of Science. 2016;29(1):129-33.