Research Article
BibTex RIS Cite

Degradation of Maxilon Blue GRL Dye Using Subcritical Water and Ultrasonic Assisted Oxidation Methods

Year 2017, Volume: 30 Issue: 4, 140 - 150, 11.12.2017

Abstract



This study was performed
to investigate the degradation of Maxilon Blue GRL which is widely used as textile
dye and whom existence in
textile wastewaters cause
major trouble to human and other livings health. Using reliable methods such as
subcritical water oxidation (SWO) and ultrasonic
assisted oxidation (UAO) methods for cleaning the textile wastewater is of great importance. In this context,
Subcritical water oxidation and
ultrasonic assisted oxidation methods were applied using homemade
stainless steel reactor system and Ultrasound system for degradation of MBG in
aqueous solution. TOC
removal was measured to determine the efficiency of the process. Experimental
variables were evaluated by Response Surface Method (RSM) and optimum
parameters and theoretical equations were proposed. ANOVA results of SWO experiments show that utilized
design was expressed by quadratic model. The properties of this model presented
by ANOVA terms. Maximum TOC removal rates obtained by using SWO and UAO were
89.44
% and 24.85 %, respectively.  Obtained findings indicated the applicability of the performed methods in
the degradation of wastewaters containing MBG.




References

  • [1] Kayan, B., Gözmen, B., “Degradation of Acid Red 274 using H2O2 in subcritical water: Application of response surface methodology”, J. Hazard. Mater., 201-202: 100-106, (2012).
  • [2] Hosseini, S.D., Asghari, F.S., Yoshida, H., “Decomposition and decoloration of synthetic dyes using hot/liquid (subcritical water)”, Water Res., 44: 1900-1908, (2010).
  • [3] Zhang, G., Okajima, I., Sako, T., “Decomposition and decoloration of dyeing wastewater by hydrothermal oxidation”, J. Supercrit. Fluids., 112: 136-142, (2016).
  • [4] Sarah, S., “World Dyes and Organic Pigments Market” Research Report (2015).
  • [5] Kusvuran, E., Gulnaz, O., Samil, A., Yildirim, O., “Decolorization of malachite green, decolorization kinetics and stoichiometry of ozone–malachite green and removal of antibacterial activity with ozonation processes”, J. Hazard. Mater., 186(1): 133-143, (2011).
  • [6] Dong, X., Ding, W., Zang, X., Liang, X., “Mechanism and kinetics model of degradation of synthetic dyes by UV–vis/H2O2/ferrioxalate complexes”, Dyes and Pigm., 74: 470-476, (2007).
  • [7] Ghaly, A.E., Ananthashankar, R., Alhattab, M., Ramakrishnan, V.V., “Production, characterization and treatment of textile effluents: a critical review”, J. Chem. Eng. Process Technol., 5(1): 1-18, (2014).
  • [8] Senthilnathan, S., Azeez, P., “Water quality of effluents from dyeing and bleaching industry in Tirupur, Tamilnadu, India”, J. Ind. Pollut. Control., 5: 79-88, (1999).
  • [9] Han, F., Kambala, V.S.R., Srinivasan, M., Rajaratham, D., Naidu, R., “Tailored titanium dioxide photolcatalysts fort he degradation of organic dyes in watewater teratment: A review”, Appl. Catal. A Gen., 359: 25-40, (2009).
  • [10] Bianco-Prevot, A., Baiocchi, C., Brussino, M.C., Pramauro, E., Savarino, P., Augugliaro, V., Marci, G., Palmisano, L., “Photocatalytic degradation of acid blue 80 in aqueous solutions containing TiO2 suspensions”, Environ. Sci. Technol., 35: 971-976, (2001).
  • [11] Neppolian, B., Choi, H.C., Sakthivel, S., Arabindoo, B., Murugesan, V., “Solar light induced and TiO2 assisted degradation of textile dye reactive blue 4”, Chemosphere., 46: 1173-1181, (2002).
  • [12] Pagga, U., Brown, D., “The degradation of dyestuffs: part II. Behaviour of dyestuffs in aerobic biodegradation tests”, Chemosphere., 15: 479-491, (1986).
  • [13] Saquib, M., Muneer, M., “TiO2-mediated photocatalytic degradation of a triphenylmethane dye (gentian violet), in aqueous suspensions”, Dyes and Pigm., 56: 37-49, (2003).
  • [14] Yüksel, A., Sasaki, M., Goto, M., “Complete degradation of Orange G by electrolysis in sub-critical water”, J. Hazard. Mater., 190: 1058-1062, (2011).
  • [15] Söğüt, O.Ö., Akgün, M., “Treatment of textile wastewater by SCWO in a tube reactor”, J. Supercrit. Fluids., 43: 106-111, (2007).
  • [16] Davydov, L., Reddy, E.P., France, P., Smirniotis, P.G., “Sonophotocatalytic destruction of organic contaminants in aqueous systems on TiO2 powders”, Appl. Catal. B., 32: 95-105, (2001).
  • [17] Daskalaki, V.M., Timotheatou, E.S., Katsaounis, A., Kalderis, D., “Degradation of Reactive Red 120 using hydrogen peroxide in subcritical water”, Desalination., 274: 200-205, (2011).
  • [18] Doğan, M., Alkan, M., Demirbaş, Ö., Özdemir, Y., Özmetin, C., “Adsorption kinetics of maxilon blue GRL onto sepiolite from aqueous solutions”, Chem. Eng. J., 124: 89-101, (2006).
  • [19] Devi, L.G., Kumar, S.G., Reddy, K.M., Munikrishnappa, C., “Photodegradation of Methyl Orange an azo dye by Advanced Fenton Process using zero valent metallic iron: Influence of various reaction parameters and its degradation mechanism”, J. Hazard. Mater., 164: 459-467, (2009).
  • [20] Erdemoglu, S., Karaaslan, S., Sayılkan, F., Izgi, B., Asilturk, M., Sayılkan, H., Frimmel, F., Güçer, Ş., “Photocatalytic degradation of Congo Red by hydrothermally synthesized nanocrystalline TiO2 and identification of degradation products by LC-MS”, J. Hazard. Mater., 155: 469-476, (2008).
  • [21] Raman, C.D., Kanmani, S., “Textile dye degradation using nano zero valent iron: A review”, J. Environ. Manage., 177: 341-355, (2016).
  • [22] Holkar, C.R., Jadhav, A.J., Pinjari, D.V., Mahamuni, N.M., Pandit, A.B., “A critical review on textile wastewater treatments: Possible approaches”, J. Environ. Manage., 182: 351-366, (2016).
  • [23] Rodriguez, A., Ovejero, G., Romero, M.D., Diaz, C., Barreiro, M., Garcia, J., “Catalytic wet air oxidation of textile industrial wastewater using metal supported on carbon nanofibers”, J. Supercrit. Fluids., 46: 163-172, (2008).
  • [24] Emire, Z., Yabalak, E., Görmez, Ö., Gizir, A., “Solubility and degradation of paracetamol in subcritical water”, J. Serb. Chem. Soc., 82: 99-106, (2017).
  • [25] Yabalak, E., Gizir, A.M., “Subcritical and supercritical fluid extraction of heavy metals from sand and sewage sludge”, J. Serb. Chem. Soc., 78: 1013-1022, (2013).
  • [26] Nikfar, E., Dehghani, M.H., Mahvi, A.H., Rastkari, N., Asif, M., Tyagi, I., Agarwal, S., Gupta, V.D., “Removal of Bisphenol A from aqueous solutions using ultrasonic waves and hydrogen peroxide”, J. Mol. Liq., 213: 332-338, (2016).
  • [27] Ogutu, F.O., Mu, T.H., Ultrasonic degradation of sweet potato pectin and its antioxidant activity”, Ultrason Sonochem., 38: 726-734, (2017).
  • [28] Hamdaoui, O., Merouani, S., “Improvement of sonochemical degradation of Brilliant blue R in water using periodate ions: Implication of iodine radicals in the oxidation process”, Ultrason Sonochem., 37: 344-350, (2017).
  • [29] Li, J., Liu, Q., Ji, Q.Q., Lai, B., “Degradation of p-nitrophenol (PNP) in aqueous solution by Fe0-PM-PS system through response surface methodology (RSM)”, Appl. Catal. B., 200: 633-646, (2017).
  • [30] Eslami, A., Asadi, A., Meserghani, M., Bahrami, H., “Optimization of sonochemical degradation of amoxicillin by sulfate radicals in aqueous solution using response surface methodology (RSM)”, J. Mol. Liq., 222: 739-744, (2016).
  • [31] Belwal, T., Dhyani, P., Bhatt, I.D., Rawal, R.S., Pande, V., “Optimization extraction conditions for improving phenolic content and antioxidant activity in Berberis asiatica fruits using response surface methodology (RSM)”, Food Chem., 207: 115-124, (2016).
  • [32] Yabalak, E., Döndaş, H.A., Gizir, A.M., “Subcritical water oxidation of 6-aminopenicillanic acid and cloxacillin using H2O2, K2S2O8, and O2”, J. Environ. Sci. Health A., 52: 210-220, (2017).
  • [33] Myers, R.H., Montgomery, D.C., Response Surface Methodology: Process and Product Optimization Using Designed Experiments. Second ed., John Wiley and Sons, USA, (2002).
  • [34] Montgomery, D.C., Design and Analysis of Experiments, fourth ed., John Wiley and Sons, USA, (1996).
  • [35] Design-Expert Software, Version 9.0.6.2, Stat-Ease, 2021 East Hennepin ave, suite 480 Minneapolis, MN 55413.
  • [36] Yabalak, E., Görmez, Ö., Gözmen, B., Gizir, A.M., “The solubility of sebacic acid in subcritical water using the response surface methodology”, Int. J. Ind. Chem., 6: 23-29, (2015).
  • [37] Kalderis, D., Hawthorne, S.B., Clifford, A.A., Gidarakos, E., “Interaction of soil, water and TNT during degradation of TNT on contaminated soil using subcritical water”, J. Hazard. Mater., 159: 329-334, (2008).
  • [38] Ammar, H.B., “Sono-Fenton process for metronidazole degradation in aqueous solution: Effect of acoustic cavitation and peroxydisulfate anion”, Ultrason Sonochem., 33: 164-169, (2016).
Year 2017, Volume: 30 Issue: 4, 140 - 150, 11.12.2017

Abstract

References

  • [1] Kayan, B., Gözmen, B., “Degradation of Acid Red 274 using H2O2 in subcritical water: Application of response surface methodology”, J. Hazard. Mater., 201-202: 100-106, (2012).
  • [2] Hosseini, S.D., Asghari, F.S., Yoshida, H., “Decomposition and decoloration of synthetic dyes using hot/liquid (subcritical water)”, Water Res., 44: 1900-1908, (2010).
  • [3] Zhang, G., Okajima, I., Sako, T., “Decomposition and decoloration of dyeing wastewater by hydrothermal oxidation”, J. Supercrit. Fluids., 112: 136-142, (2016).
  • [4] Sarah, S., “World Dyes and Organic Pigments Market” Research Report (2015).
  • [5] Kusvuran, E., Gulnaz, O., Samil, A., Yildirim, O., “Decolorization of malachite green, decolorization kinetics and stoichiometry of ozone–malachite green and removal of antibacterial activity with ozonation processes”, J. Hazard. Mater., 186(1): 133-143, (2011).
  • [6] Dong, X., Ding, W., Zang, X., Liang, X., “Mechanism and kinetics model of degradation of synthetic dyes by UV–vis/H2O2/ferrioxalate complexes”, Dyes and Pigm., 74: 470-476, (2007).
  • [7] Ghaly, A.E., Ananthashankar, R., Alhattab, M., Ramakrishnan, V.V., “Production, characterization and treatment of textile effluents: a critical review”, J. Chem. Eng. Process Technol., 5(1): 1-18, (2014).
  • [8] Senthilnathan, S., Azeez, P., “Water quality of effluents from dyeing and bleaching industry in Tirupur, Tamilnadu, India”, J. Ind. Pollut. Control., 5: 79-88, (1999).
  • [9] Han, F., Kambala, V.S.R., Srinivasan, M., Rajaratham, D., Naidu, R., “Tailored titanium dioxide photolcatalysts fort he degradation of organic dyes in watewater teratment: A review”, Appl. Catal. A Gen., 359: 25-40, (2009).
  • [10] Bianco-Prevot, A., Baiocchi, C., Brussino, M.C., Pramauro, E., Savarino, P., Augugliaro, V., Marci, G., Palmisano, L., “Photocatalytic degradation of acid blue 80 in aqueous solutions containing TiO2 suspensions”, Environ. Sci. Technol., 35: 971-976, (2001).
  • [11] Neppolian, B., Choi, H.C., Sakthivel, S., Arabindoo, B., Murugesan, V., “Solar light induced and TiO2 assisted degradation of textile dye reactive blue 4”, Chemosphere., 46: 1173-1181, (2002).
  • [12] Pagga, U., Brown, D., “The degradation of dyestuffs: part II. Behaviour of dyestuffs in aerobic biodegradation tests”, Chemosphere., 15: 479-491, (1986).
  • [13] Saquib, M., Muneer, M., “TiO2-mediated photocatalytic degradation of a triphenylmethane dye (gentian violet), in aqueous suspensions”, Dyes and Pigm., 56: 37-49, (2003).
  • [14] Yüksel, A., Sasaki, M., Goto, M., “Complete degradation of Orange G by electrolysis in sub-critical water”, J. Hazard. Mater., 190: 1058-1062, (2011).
  • [15] Söğüt, O.Ö., Akgün, M., “Treatment of textile wastewater by SCWO in a tube reactor”, J. Supercrit. Fluids., 43: 106-111, (2007).
  • [16] Davydov, L., Reddy, E.P., France, P., Smirniotis, P.G., “Sonophotocatalytic destruction of organic contaminants in aqueous systems on TiO2 powders”, Appl. Catal. B., 32: 95-105, (2001).
  • [17] Daskalaki, V.M., Timotheatou, E.S., Katsaounis, A., Kalderis, D., “Degradation of Reactive Red 120 using hydrogen peroxide in subcritical water”, Desalination., 274: 200-205, (2011).
  • [18] Doğan, M., Alkan, M., Demirbaş, Ö., Özdemir, Y., Özmetin, C., “Adsorption kinetics of maxilon blue GRL onto sepiolite from aqueous solutions”, Chem. Eng. J., 124: 89-101, (2006).
  • [19] Devi, L.G., Kumar, S.G., Reddy, K.M., Munikrishnappa, C., “Photodegradation of Methyl Orange an azo dye by Advanced Fenton Process using zero valent metallic iron: Influence of various reaction parameters and its degradation mechanism”, J. Hazard. Mater., 164: 459-467, (2009).
  • [20] Erdemoglu, S., Karaaslan, S., Sayılkan, F., Izgi, B., Asilturk, M., Sayılkan, H., Frimmel, F., Güçer, Ş., “Photocatalytic degradation of Congo Red by hydrothermally synthesized nanocrystalline TiO2 and identification of degradation products by LC-MS”, J. Hazard. Mater., 155: 469-476, (2008).
  • [21] Raman, C.D., Kanmani, S., “Textile dye degradation using nano zero valent iron: A review”, J. Environ. Manage., 177: 341-355, (2016).
  • [22] Holkar, C.R., Jadhav, A.J., Pinjari, D.V., Mahamuni, N.M., Pandit, A.B., “A critical review on textile wastewater treatments: Possible approaches”, J. Environ. Manage., 182: 351-366, (2016).
  • [23] Rodriguez, A., Ovejero, G., Romero, M.D., Diaz, C., Barreiro, M., Garcia, J., “Catalytic wet air oxidation of textile industrial wastewater using metal supported on carbon nanofibers”, J. Supercrit. Fluids., 46: 163-172, (2008).
  • [24] Emire, Z., Yabalak, E., Görmez, Ö., Gizir, A., “Solubility and degradation of paracetamol in subcritical water”, J. Serb. Chem. Soc., 82: 99-106, (2017).
  • [25] Yabalak, E., Gizir, A.M., “Subcritical and supercritical fluid extraction of heavy metals from sand and sewage sludge”, J. Serb. Chem. Soc., 78: 1013-1022, (2013).
  • [26] Nikfar, E., Dehghani, M.H., Mahvi, A.H., Rastkari, N., Asif, M., Tyagi, I., Agarwal, S., Gupta, V.D., “Removal of Bisphenol A from aqueous solutions using ultrasonic waves and hydrogen peroxide”, J. Mol. Liq., 213: 332-338, (2016).
  • [27] Ogutu, F.O., Mu, T.H., Ultrasonic degradation of sweet potato pectin and its antioxidant activity”, Ultrason Sonochem., 38: 726-734, (2017).
  • [28] Hamdaoui, O., Merouani, S., “Improvement of sonochemical degradation of Brilliant blue R in water using periodate ions: Implication of iodine radicals in the oxidation process”, Ultrason Sonochem., 37: 344-350, (2017).
  • [29] Li, J., Liu, Q., Ji, Q.Q., Lai, B., “Degradation of p-nitrophenol (PNP) in aqueous solution by Fe0-PM-PS system through response surface methodology (RSM)”, Appl. Catal. B., 200: 633-646, (2017).
  • [30] Eslami, A., Asadi, A., Meserghani, M., Bahrami, H., “Optimization of sonochemical degradation of amoxicillin by sulfate radicals in aqueous solution using response surface methodology (RSM)”, J. Mol. Liq., 222: 739-744, (2016).
  • [31] Belwal, T., Dhyani, P., Bhatt, I.D., Rawal, R.S., Pande, V., “Optimization extraction conditions for improving phenolic content and antioxidant activity in Berberis asiatica fruits using response surface methodology (RSM)”, Food Chem., 207: 115-124, (2016).
  • [32] Yabalak, E., Döndaş, H.A., Gizir, A.M., “Subcritical water oxidation of 6-aminopenicillanic acid and cloxacillin using H2O2, K2S2O8, and O2”, J. Environ. Sci. Health A., 52: 210-220, (2017).
  • [33] Myers, R.H., Montgomery, D.C., Response Surface Methodology: Process and Product Optimization Using Designed Experiments. Second ed., John Wiley and Sons, USA, (2002).
  • [34] Montgomery, D.C., Design and Analysis of Experiments, fourth ed., John Wiley and Sons, USA, (1996).
  • [35] Design-Expert Software, Version 9.0.6.2, Stat-Ease, 2021 East Hennepin ave, suite 480 Minneapolis, MN 55413.
  • [36] Yabalak, E., Görmez, Ö., Gözmen, B., Gizir, A.M., “The solubility of sebacic acid in subcritical water using the response surface methodology”, Int. J. Ind. Chem., 6: 23-29, (2015).
  • [37] Kalderis, D., Hawthorne, S.B., Clifford, A.A., Gidarakos, E., “Interaction of soil, water and TNT during degradation of TNT on contaminated soil using subcritical water”, J. Hazard. Mater., 159: 329-334, (2008).
  • [38] Ammar, H.B., “Sono-Fenton process for metronidazole degradation in aqueous solution: Effect of acoustic cavitation and peroxydisulfate anion”, Ultrason Sonochem., 33: 164-169, (2016).
There are 38 citations in total.

Details

Journal Section Chemistry
Authors

Hazal Emgili This is me

Erdal Yabalak 0000-0002-4009-4174

Özkan Görmez This is me

A. Murat Gizir This is me

Publication Date December 11, 2017
Published in Issue Year 2017 Volume: 30 Issue: 4

Cite

APA Emgili, H., Yabalak, E., Görmez, Ö., Gizir, A. M. (2017). Degradation of Maxilon Blue GRL Dye Using Subcritical Water and Ultrasonic Assisted Oxidation Methods. Gazi University Journal of Science, 30(4), 140-150.
AMA Emgili H, Yabalak E, Görmez Ö, Gizir AM. Degradation of Maxilon Blue GRL Dye Using Subcritical Water and Ultrasonic Assisted Oxidation Methods. Gazi University Journal of Science. December 2017;30(4):140-150.
Chicago Emgili, Hazal, Erdal Yabalak, Özkan Görmez, and A. Murat Gizir. “Degradation of Maxilon Blue GRL Dye Using Subcritical Water and Ultrasonic Assisted Oxidation Methods”. Gazi University Journal of Science 30, no. 4 (December 2017): 140-50.
EndNote Emgili H, Yabalak E, Görmez Ö, Gizir AM (December 1, 2017) Degradation of Maxilon Blue GRL Dye Using Subcritical Water and Ultrasonic Assisted Oxidation Methods. Gazi University Journal of Science 30 4 140–150.
IEEE H. Emgili, E. Yabalak, Ö. Görmez, and A. M. Gizir, “Degradation of Maxilon Blue GRL Dye Using Subcritical Water and Ultrasonic Assisted Oxidation Methods”, Gazi University Journal of Science, vol. 30, no. 4, pp. 140–150, 2017.
ISNAD Emgili, Hazal et al. “Degradation of Maxilon Blue GRL Dye Using Subcritical Water and Ultrasonic Assisted Oxidation Methods”. Gazi University Journal of Science 30/4 (December 2017), 140-150.
JAMA Emgili H, Yabalak E, Görmez Ö, Gizir AM. Degradation of Maxilon Blue GRL Dye Using Subcritical Water and Ultrasonic Assisted Oxidation Methods. Gazi University Journal of Science. 2017;30:140–150.
MLA Emgili, Hazal et al. “Degradation of Maxilon Blue GRL Dye Using Subcritical Water and Ultrasonic Assisted Oxidation Methods”. Gazi University Journal of Science, vol. 30, no. 4, 2017, pp. 140-5.
Vancouver Emgili H, Yabalak E, Görmez Ö, Gizir AM. Degradation of Maxilon Blue GRL Dye Using Subcritical Water and Ultrasonic Assisted Oxidation Methods. Gazi University Journal of Science. 2017;30(4):140-5.