Research Article
BibTex RIS Cite

Directional Bertrand Curves

Year 2018, Volume: 31 Issue: 1, 202 - 211, 01.03.2018

Abstract

It is well known that a characteristic property of the Bertrand curve is

the existence of a linear relation between its curvature and torsion. In this

paper, we propose a new method for generating Bertrand curves, which

avoids the basic restrictions. Our main result is that every space curve is

a directional Bertrand curve with in nite directional Bertrand mates.

References

  • Bloomenthal, J. 1990. Calculation of reference frames along a space curve. Graphics Gems, 1: 567-571.
  • Choi, J.H., Kang, T.H. & Kim, Y.H. 2012. Bertrand curves in 3- dimensional space forms. Applied Mathematics and Computation, 219: 1040-1046.
  • Ekmekci, N. & Ilarslan, K. 2001. On Bertrand curves and their characterization. Di fferential Geometry Dynamical System, 3: 17-24.
Year 2018, Volume: 31 Issue: 1, 202 - 211, 01.03.2018

Abstract

References

  • Bloomenthal, J. 1990. Calculation of reference frames along a space curve. Graphics Gems, 1: 567-571.
  • Choi, J.H., Kang, T.H. & Kim, Y.H. 2012. Bertrand curves in 3- dimensional space forms. Applied Mathematics and Computation, 219: 1040-1046.
  • Ekmekci, N. & Ilarslan, K. 2001. On Bertrand curves and their characterization. Di fferential Geometry Dynamical System, 3: 17-24.
There are 3 citations in total.

Details

Journal Section Mathematics
Authors

Mustafa Dede

Cumali Ekici

Publication Date March 1, 2018
Published in Issue Year 2018 Volume: 31 Issue: 1

Cite

APA Dede, M., & Ekici, C. (2018). Directional Bertrand Curves. Gazi University Journal of Science, 31(1), 202-211.
AMA Dede M, Ekici C. Directional Bertrand Curves. Gazi University Journal of Science. March 2018;31(1):202-211.
Chicago Dede, Mustafa, and Cumali Ekici. “Directional Bertrand Curves”. Gazi University Journal of Science 31, no. 1 (March 2018): 202-11.
EndNote Dede M, Ekici C (March 1, 2018) Directional Bertrand Curves. Gazi University Journal of Science 31 1 202–211.
IEEE M. Dede and C. Ekici, “Directional Bertrand Curves”, Gazi University Journal of Science, vol. 31, no. 1, pp. 202–211, 2018.
ISNAD Dede, Mustafa - Ekici, Cumali. “Directional Bertrand Curves”. Gazi University Journal of Science 31/1 (March 2018), 202-211.
JAMA Dede M, Ekici C. Directional Bertrand Curves. Gazi University Journal of Science. 2018;31:202–211.
MLA Dede, Mustafa and Cumali Ekici. “Directional Bertrand Curves”. Gazi University Journal of Science, vol. 31, no. 1, 2018, pp. 202-11.
Vancouver Dede M, Ekici C. Directional Bertrand Curves. Gazi University Journal of Science. 2018;31(1):202-11.