Araştırma Makalesi
BibTex RIS Kaynak Göster

Evaluation of Multi-Walled CNT particulate reinforced Ti6Al4V alloy based composites creep behavior of materials under static loads.

Yıl 2019, Cilt: 32 Sayı: 1, 286 - 298, 01.03.2019

Öz

This study examines the effects
of additions of Carbon Nanotube (CNT) into Ti6Al4V matrix by mechanical
alloying at low CNT rates and investigates into sintering conditions on the
density, microstructure, and static creep behaviors. After producing Ti6Al4V
composites containing different amounts of CNT by mechanical alloying and
sintering at 1300°C.



The density of CNT
reinforced Ti6Al4V composites sintered at 1300°C for 3h decreases with
increasing CNT content. The hardness tests indicated that the hardness of
composites increased with CNT addition. Creep tests showed that the creep strength
of composites increased with CNT content until 4% of CNT but decreased after
this value. In addition, although static creep displacements are decreased
continually with CNT content until 5%, static creep life increased with
increasing CNT content until 4% of CNT but decreased above 4%.

Kaynakça

  • A.G. Jackson, J. Moteff, F.H. Froes, “Advanced titanium-alloy department via powder-metallurgy” J. Met. 31 (1979), pp. 145-145.
  • Z.Y. Ma, R.S. Mishra, S.C. Tjong, “High-temperature creep behavior of TiC particulate reinforced Ti-6Al-4V alloy composite” Acta Mater. 50 (2002), pp. 4293-4302.
  • L. Wang, Z.-B. Lang, H.-P. Shi, “Properties and forming process of prealloyed powder metallurgy Ti-6Al-4V alloy” Trans. Nonferr. Met. Soc. China. 17 (2007), pp.639-643.
  • J.-Q. Jiang, T.-S. Lim, Y.-J. Kim, B.-K. Kim, H.-S. Chung, “In situ formation of TiC-(Ti-6Al-4V) composites” Mater. Sci. Technol. 12 (1996), pp. 362-365.
  • Topcu, İ, “Determination of mechanical properties of Ceramic reinforced Al matrix composites under dynamic loading condıtıons” Master’s. Thesis, Marmara Unv.Turkey, 2007, pp. 51-58
  • Mamalis, A.G. Vogtländer, L.O.G. Markopoulos, A. (2004), ” Nanotechnology and nanostructured materials: trends in carbon nanotubes” Precision Eng. 28, pp. 16–30.
  • Baxendale, M. Mater, J. (2003),” The physics and applications of carbon nanotubes” Materials in Electronics. 14, pp. 657–659.
  • Thostenson, E.T. Ren, Z. Chou, T.W. (2001), “Advances in the science and technology of carbon nanotubes and their composites” Compos. Sci. Technol. 61, pp.1899–1912.
  • Lau, A.K. Hui, D. (2002),” The revolutionary creation of new advanced materials—carbon nanotube composites”Compos. Part B: Eng. 33, pp. 263–277.
  • Pipes, R.B. Hubert, P. (2002) “Helical carbon nanotube arrays: mechanical properties”Compos. Sci. Technol. 62, pp. 419–428.
  • Salvetat-Delmotte, J. Rubio, A. (2002) “Mechanical properties of carbon nanotubes: a fiber digest for beginners” Carbon 40, pp. 1729–1734.
  • Saether, E. Frankland, S.J. Pipes, R.B. (2003) “Self-consistent properties of carbon nanotubes and hexagonal arrays as composite reinforcements” Compos. Sci. Technol. 63, pp. 1543–1550.
  • Davey, A.P. Coleman, J. Dalton, A. Maier, S. Drury, A. Gray, D. Brennan, M. Ryder, K. Lamy De La Chapelle, M. Journet, C. (1999) “Processing of copper–carbon nanotube composites by vacuum hot pressing technique” Synth.Met. 103, pp. 2559–2562.
  • Valentini, L. Biagiotti, J. Kenny, J.M. Santucci, S. (2003), “Morphological characterization of single-walled carbon nanotubes-PP composites” Compos. Sci.Technol. 63, pp. 1149–1153.
  • Maser, W.K. Benito, A.M. Callejas, M.A. Seeger, T. Mart´ınez, M.T. Schreiber, J. Muszynski, J. Chauvet, O. Osváth, Z. Koós, A.A Biró, L.P. (2003) “Synthesis and characterization of new polyaniline/nanotube composites” Mater. Sci. Eng.: C 23, pp. 87–91.
  • Andrews, R. Weisenberger, M.C. (2004), “Carbon nanotube polymer composites” Current opinion in solid State Material Sciences, in press, Available online May 2004.
  • Ajayan, P.M. Schadler, L.S. Giannaris, C. Rubio, A. (2002), “Synthesis and characterization of plasma spray formed carbon nanotube reinforced aluminum composite”Adv. Mater. (FRG) (Germany) 12, pp. 750–753.
  • Wong, M. Paramsothy, M. Xu, X.J. Ren, Y. Li, S. Liao, K.(2003) “Physical interactions at carbon nanotube-polymer interface” Polymer 44, pp. 7757–7764.
  • Odegard, G.M. Pipes, R.B. Hubert, P. (2003) “Comparison of two models of SWCN polymer composites” Compos. Sci. Technol. 64, pp.1011–1020.
  • Kymakis, E. Alexandou, I. Amaratunga, G.A.J. (2002) “Single-walled carbon nanotube-polymer composites: electrical, optical and structural investigation” Synth. Met. 127, pp. 59–62.
  • Balázsi, Z. Kónya, F.Wéber, L. Biró, L. Arató, P. (2003) “Preparation and characterization of carbon nanotube reinforced silicon nitride composites” Mater. Sci. Eng.: C 23, pp. 1133–1137.
  • Rul, S. Lefèvre-schlick, F. Capria, E. Laurent, Ch. Peigney, A. (2004), “Percolation of single-walled carbon nanotubes in ceramic matrix nanocomposites” Acta Mater. 52, pp. 1061–1067.
  • Liu, Z , Tao, R , Ban, G , Luo, P . (). Absorbing Property of Multi-layered Short Carbon Fiber Absorbing Coating. Gazi University Journal of Science, 30 (3), 29-37. Retrieved from http://dergipark.gov.tr/gujs/issue/31190/309755
  • A. Peigney, E. Flahaut, Ch. Laurent, F. Chastel, A. Rousset, Chem. Phys. Lett. “Aligned carbon nantubes in ceramic-matrix nano composites prepared by high tempareture extrusion” Chem. Phys. Lett. 352 (2002), pp. 20–25.
  • M. R. Bafandeh, R. Gharahkhani, M.H.Fathi “Fabrication, Characterization and Osteoblast Response of Cobalt-Based Alloy/Nano Bioactive Glass Composites” Journal of Advanced Materials and Processing, Vol. 4, No. 3, 2016, pp.3-13 3
  • Solakoğlu, İ. Ataoğlu, Ş. Güllüoğlu,AN.” Temperature dependent mechanical characterization of styrene-acrylonitrile”. Polymer composites Volume 17, Issues 4, 2009, pp. 247-252.

Evaluation of Multi-Walled CNT Particulate Reinforced Ti6Al4V Alloy Based Composites Creep Behavior of Materials Under Static Loads

Yıl 2019, Cilt: 32 Sayı: 1, 286 - 298, 01.03.2019

Öz

This study examines the effects of additions of
0.5-5 v/v percentage multi-walled carbon nanotubes into the Ti-6Al-4V matrix by
mechanical alloying at low rates and investigates the results of the different
sintering conditions on the density, microstructure, and Creep behavior. Mechanical
properties, microstructural and density of composite materials (Ti64 / CNT)
produced by cold isostatic press molding method have been investigated. MWCNTs
reinforced metal matrix composite powders were molded by cold isostatic
pressing method using polyacrylonitrile (PAN) based binder. The binder
decomposition was carried out by heat treatment. After molding, the specimens
have been sintered at high temperature in high vacuum (10-2 bar). Metallographic
experiments were carried out to examine density and microstructure. Experimental
results indicate Ti–6Al–4V particulate can be sintered to up to 98,5% of
calculated density. Maximum hardness was obtained 538 HV at 1300
oC
for 3 hours and creep life inverse. By using SEM and X-ray diffractometer the
characteristics of produced composite samples were investigated. 
Although Ti–6Al–4V alloys are used as
biomaterial, this study aimed at using MWCNTs containing Ti-6Al-4V composites
at high temperature applications. Because MWCNTs reinforced Ti-6Al-4V
composites are cheaper and has lower weight than the other materials used in
this kind of applications.

Kaynakça

  • A.G. Jackson, J. Moteff, F.H. Froes, “Advanced titanium-alloy department via powder-metallurgy” J. Met. 31 (1979), pp. 145-145.
  • Z.Y. Ma, R.S. Mishra, S.C. Tjong, “High-temperature creep behavior of TiC particulate reinforced Ti-6Al-4V alloy composite” Acta Mater. 50 (2002), pp. 4293-4302.
  • L. Wang, Z.-B. Lang, H.-P. Shi, “Properties and forming process of prealloyed powder metallurgy Ti-6Al-4V alloy” Trans. Nonferr. Met. Soc. China. 17 (2007), pp.639-643.
  • J.-Q. Jiang, T.-S. Lim, Y.-J. Kim, B.-K. Kim, H.-S. Chung, “In situ formation of TiC-(Ti-6Al-4V) composites” Mater. Sci. Technol. 12 (1996), pp. 362-365.
  • Topcu, İ, “Determination of mechanical properties of Ceramic reinforced Al matrix composites under dynamic loading condıtıons” Master’s. Thesis, Marmara Unv.Turkey, 2007, pp. 51-58
  • Mamalis, A.G. Vogtländer, L.O.G. Markopoulos, A. (2004), ” Nanotechnology and nanostructured materials: trends in carbon nanotubes” Precision Eng. 28, pp. 16–30.
  • Baxendale, M. Mater, J. (2003),” The physics and applications of carbon nanotubes” Materials in Electronics. 14, pp. 657–659.
  • Thostenson, E.T. Ren, Z. Chou, T.W. (2001), “Advances in the science and technology of carbon nanotubes and their composites” Compos. Sci. Technol. 61, pp.1899–1912.
  • Lau, A.K. Hui, D. (2002),” The revolutionary creation of new advanced materials—carbon nanotube composites”Compos. Part B: Eng. 33, pp. 263–277.
  • Pipes, R.B. Hubert, P. (2002) “Helical carbon nanotube arrays: mechanical properties”Compos. Sci. Technol. 62, pp. 419–428.
  • Salvetat-Delmotte, J. Rubio, A. (2002) “Mechanical properties of carbon nanotubes: a fiber digest for beginners” Carbon 40, pp. 1729–1734.
  • Saether, E. Frankland, S.J. Pipes, R.B. (2003) “Self-consistent properties of carbon nanotubes and hexagonal arrays as composite reinforcements” Compos. Sci. Technol. 63, pp. 1543–1550.
  • Davey, A.P. Coleman, J. Dalton, A. Maier, S. Drury, A. Gray, D. Brennan, M. Ryder, K. Lamy De La Chapelle, M. Journet, C. (1999) “Processing of copper–carbon nanotube composites by vacuum hot pressing technique” Synth.Met. 103, pp. 2559–2562.
  • Valentini, L. Biagiotti, J. Kenny, J.M. Santucci, S. (2003), “Morphological characterization of single-walled carbon nanotubes-PP composites” Compos. Sci.Technol. 63, pp. 1149–1153.
  • Maser, W.K. Benito, A.M. Callejas, M.A. Seeger, T. Mart´ınez, M.T. Schreiber, J. Muszynski, J. Chauvet, O. Osváth, Z. Koós, A.A Biró, L.P. (2003) “Synthesis and characterization of new polyaniline/nanotube composites” Mater. Sci. Eng.: C 23, pp. 87–91.
  • Andrews, R. Weisenberger, M.C. (2004), “Carbon nanotube polymer composites” Current opinion in solid State Material Sciences, in press, Available online May 2004.
  • Ajayan, P.M. Schadler, L.S. Giannaris, C. Rubio, A. (2002), “Synthesis and characterization of plasma spray formed carbon nanotube reinforced aluminum composite”Adv. Mater. (FRG) (Germany) 12, pp. 750–753.
  • Wong, M. Paramsothy, M. Xu, X.J. Ren, Y. Li, S. Liao, K.(2003) “Physical interactions at carbon nanotube-polymer interface” Polymer 44, pp. 7757–7764.
  • Odegard, G.M. Pipes, R.B. Hubert, P. (2003) “Comparison of two models of SWCN polymer composites” Compos. Sci. Technol. 64, pp.1011–1020.
  • Kymakis, E. Alexandou, I. Amaratunga, G.A.J. (2002) “Single-walled carbon nanotube-polymer composites: electrical, optical and structural investigation” Synth. Met. 127, pp. 59–62.
  • Balázsi, Z. Kónya, F.Wéber, L. Biró, L. Arató, P. (2003) “Preparation and characterization of carbon nanotube reinforced silicon nitride composites” Mater. Sci. Eng.: C 23, pp. 1133–1137.
  • Rul, S. Lefèvre-schlick, F. Capria, E. Laurent, Ch. Peigney, A. (2004), “Percolation of single-walled carbon nanotubes in ceramic matrix nanocomposites” Acta Mater. 52, pp. 1061–1067.
  • Liu, Z , Tao, R , Ban, G , Luo, P . (). Absorbing Property of Multi-layered Short Carbon Fiber Absorbing Coating. Gazi University Journal of Science, 30 (3), 29-37. Retrieved from http://dergipark.gov.tr/gujs/issue/31190/309755
  • A. Peigney, E. Flahaut, Ch. Laurent, F. Chastel, A. Rousset, Chem. Phys. Lett. “Aligned carbon nantubes in ceramic-matrix nano composites prepared by high tempareture extrusion” Chem. Phys. Lett. 352 (2002), pp. 20–25.
  • M. R. Bafandeh, R. Gharahkhani, M.H.Fathi “Fabrication, Characterization and Osteoblast Response of Cobalt-Based Alloy/Nano Bioactive Glass Composites” Journal of Advanced Materials and Processing, Vol. 4, No. 3, 2016, pp.3-13 3
  • Solakoğlu, İ. Ataoğlu, Ş. Güllüoğlu,AN.” Temperature dependent mechanical characterization of styrene-acrylonitrile”. Polymer composites Volume 17, Issues 4, 2009, pp. 247-252.
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Physics
Yazarlar

İsmaıl Topcu

H.Ozkan Gulsoy

Arıf N. Gulluoglu

Yayımlanma Tarihi 1 Mart 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 32 Sayı: 1

Kaynak Göster

APA Topcu, İ., Gulsoy, H., & Gulluoglu, A. N. (2019). Evaluation of Multi-Walled CNT Particulate Reinforced Ti6Al4V Alloy Based Composites Creep Behavior of Materials Under Static Loads. Gazi University Journal of Science, 32(1), 286-298.
AMA Topcu İ, Gulsoy H, Gulluoglu AN. Evaluation of Multi-Walled CNT Particulate Reinforced Ti6Al4V Alloy Based Composites Creep Behavior of Materials Under Static Loads. Gazi University Journal of Science. Mart 2019;32(1):286-298.
Chicago Topcu, İsmaıl, H.Ozkan Gulsoy, ve Arıf N. Gulluoglu. “Evaluation of Multi-Walled CNT Particulate Reinforced Ti6Al4V Alloy Based Composites Creep Behavior of Materials Under Static Loads”. Gazi University Journal of Science 32, sy. 1 (Mart 2019): 286-98.
EndNote Topcu İ, Gulsoy H, Gulluoglu AN (01 Mart 2019) Evaluation of Multi-Walled CNT Particulate Reinforced Ti6Al4V Alloy Based Composites Creep Behavior of Materials Under Static Loads. Gazi University Journal of Science 32 1 286–298.
IEEE İ. Topcu, H. Gulsoy, ve A. N. Gulluoglu, “Evaluation of Multi-Walled CNT Particulate Reinforced Ti6Al4V Alloy Based Composites Creep Behavior of Materials Under Static Loads”, Gazi University Journal of Science, c. 32, sy. 1, ss. 286–298, 2019.
ISNAD Topcu, İsmaıl vd. “Evaluation of Multi-Walled CNT Particulate Reinforced Ti6Al4V Alloy Based Composites Creep Behavior of Materials Under Static Loads”. Gazi University Journal of Science 32/1 (Mart 2019), 286-298.
JAMA Topcu İ, Gulsoy H, Gulluoglu AN. Evaluation of Multi-Walled CNT Particulate Reinforced Ti6Al4V Alloy Based Composites Creep Behavior of Materials Under Static Loads. Gazi University Journal of Science. 2019;32:286–298.
MLA Topcu, İsmaıl vd. “Evaluation of Multi-Walled CNT Particulate Reinforced Ti6Al4V Alloy Based Composites Creep Behavior of Materials Under Static Loads”. Gazi University Journal of Science, c. 32, sy. 1, 2019, ss. 286-98.
Vancouver Topcu İ, Gulsoy H, Gulluoglu AN. Evaluation of Multi-Walled CNT Particulate Reinforced Ti6Al4V Alloy Based Composites Creep Behavior of Materials Under Static Loads. Gazi University Journal of Science. 2019;32(1):286-98.