Research Article
BibTex RIS Cite

Isolation and Molecular Identification of Streptomyces tendae and its Xylanase Production Using Cost-Effective Agro‐Residues

Year 2025, Early View, 1 - 1
https://doi.org/10.35378/gujs.1489525

Abstract

Due to their biotechnological importance in different industrial fields, xylanases from microorganisms have been the focus of great attention. In this regard, bacterial strain, SHB_02, one of the best xylanase producer isolated during a screening study from soil, was identified as Streptomyces tendae (GenBank accession no. OP893637) based on phenotypic characters and 16S rRNA gene sequencing. Experiments were carried out with three different agro-residues, such as corncob, wheat bran and wheat straw, for xylanase production by fermentation. The optimum parameters for producing the xylanase from Streptomyces tendae were temperature 30 oC, pH 7.5, incubation period 72 h, inoculum concentration 2%, and shaking speed 140 rpm. Among the agricultural by-products, wheat straw, 3% (w/v), has the highest xylanase as the sole carbon source. On the other hand, the best nitrogen source was determined to be yeast extract (0.25%). The xylanase was stable at pH 8 and 50 oC for at least two h. These findings suggest that a novel strain of Streptomyces tendae may produce xylanase that can be obtained inexpensively by fermentation using agro-residues.

References

  • [1] Horikoshi, K., "Alkaliphiles: Some Applications of Their Products for Biotechnology", Microbiology and Molecular Biology Reviews, 63(4): 735–750, (1999). DOI: https://doi.org/10.1128/mmbr.63.4.735-750.1999
  • [2] Kaur, D., Joshi, A., Sharma, V., Batra, N., Sharma, A. K., "An insight into microbial sources, classification, and industrial applications of xylanases: A rapid review", Biotechnology and Applied Biochemistry, 70(4): 1489–1503, (2023). DOI: https://doi.org/10.1002/bab.2469
  • [3] Puchart, V., Biely, P., "A simple enzymatic synthesis of 4-nitrophenyl β-1,4-d-xylobioside, a chromogenic substrate for assay and differentiation of endoxylanases", Journal of Biotechnology, 128(3): 576–586, (2007). DOI: https://doi.org/10.1016/j.jbiotec.2006.12.011
  • [4] Beg, Q. K., Kapoor, M., Mahajan, L., Hoondal, G. S., "Microbial xylanases and their industrial applications: A review", Applied Microbiology and Biotechnology, 56(3–4): 326–338, (2001). DOI: https://doi.org/10.1007/s002530100704
  • [5] Srinivasan, M. C., Rele, M. V., "Microbial xylanases for the paper industry", Current Science, 77(1): 137–142, (1999). DOI: https://www.jstor.org/stable/24102921
  • [6] Akram, F., Fatima, T., Ibrar, R., Shabbir, I., Shah, F. I., Haq, I., "Trends in the development and current perspective of thermostable bacterial hemicellulases with their industrial endeavours: A review", International Journal of Biological Macromolecules, 265(P1): 130993, (2024). DOI: https://doi.org/10.1016/j.ijbiomac.2024.130993
  • [7] Shrivastava, S., Shukla, P., Poddar, R., "In silico studies for evaluating conservation homology among family 11 xylanases from Thermomyces lanuginosus", Journal of Applied Sciences in Environmental Sanitation, 2(3): 70–76, (2008).
  • [8] Dhiman, S. S., Sharma, J., Battan, B., "Pretreatment processing of fabrics by alkalothermophilic xylanase from Bacillus stearothermophilus SDX", Enzyme and Microbial Technology, 43(3): 262–269, (2008). DOI: https://doi.org/10.1016/j.enzmictec.2008.03.016
  • [9] Christov, L., Biely, P., Kalogeris, E., Christakopoulos, P., Prior, B. A., Bhat, M. K., "Effects of purified endo-β-1,4-xylanases of family 10 and 11 and acetyl xylan esterases on eucalypt sulfite dissolving pulp", Journal of Biotechnology, 83(3): 231–244, (2000). DOI: https://doi.org/10.1016/S0168-1656(00)00324-2
  • [10] Adiguzel, G., Faiz, O., Sisecioglu, M., Sari, B., Baltaci, O., Akbulut, S., Adiguzel, A., "A novel endo-β-1,4-xylanase from Pediococcus acidilactici GC25; purification, characterization and application in clarification of fruit juices", International Journal of Biological Macromolecules, 129: 571–578, (2019). DOI: https://doi.org/10.1016/j.ijbiomac.2019.02.054
  • [11] Mendonça, M., Barroca, M., Collins, T., "Endo-1,4-β-xylanase-containing glycoside hydrolase families: characteristics, singularities and similarities", Biotechnology Advances, 65(108148), (2023). DOI: https://doi.org/10.1016/j.biotechadv.2023.108148
  • [12] Gilbert, H. J., Hazlewood, G. P., "Bacterial cellulases and xylanases", Journal of General Microbiology, 139(2): 187–194, (1993).
  • [13] Ho, H.L., "Biotechnology of Microbial Xylanase: Overview", Research Advancements in Pharmaceutical, Nutritional, and Industrial Enzymology, 294-325, (2018). DOI: https://doi.org/10.4018/978-1-5225-5237-6.ch013
  • [14] Uffen, R. L., "Xylan degradation: A glimpse at microbial diversity", Journal of Industrial Microbiology and Biotechnology, 19(1): 1–6, (1997). DOI: https://doi.org/10.1038/sj.jim.2900417
  • [15] Sari, B., Faiz, O., Genc, B., Sisecioglu, M., Adiguzel, A., Adiguzel, G., "New xylanolytic enzyme from Geobacillus galactosidasius BS61 from a geothermal resource in Turkey", International Journal of Biological Macromolecules, 119: 1017–1026, (2018). DOI: https://doi.org/10.1016/j.ijbiomac.2018.07.166
  • [16] Shallom, D., Shoham, Y., "Microbial hemicellulases", Current Opinion in Microbiology, 6(3): 219–228, (2003). DOI: https://doi.org/10.1016/S1369-5274(03)00056-0
  • [17] Gomes, J., Gomes, I., Terler, K., Gubala, N., Ditzelmüller, G., Steiner, W., "Optimisation of culture medium and conditions for α-L-arabinofuranosidase production by the extreme thermophilic eubacterium Rhodothermus marinus", Enzyme and Microbial Technology, 27(6): 414–422, (2000). DOI: https://doi.org/10.1016/S0141-0229(00)00229-5
  • [18] Oskay, M., "Comparison of Streptomyces diversity between agricultural and non-agricultural soils by using various culture media", Scientific Research and Essays, 4(10): 997–1005, (2009).
  • [19] Oskay, M., Tamer, A. Ü., Azeri, C., "Antibacterial activity of some actinomycetes isolated from farming soils of Turkey", African Journal of Biotechnology, 3(9): 441–446, (2004).
  • [20] Techapun, C., Sinsuwongwat, S., Poosaran, N., Watanabe, M., Sasaki, K., "Production of a cellulase-free xylanase from agricultural waste materials by a thermotolerant Streptomyces sp.", Biotechnology Letters, 23(20): 1685–1689, (2001). DOI: https://doi.org/10.1023/A:1012448229555
  • [21] Collins, T., Gerday, C., Feller, G., "Xylanases, xylanase families and extremophilic xylanases", FEMS Microbiology Reviews, 29(1): 3–23, (2005). DOI: https://doi.org/10.1016/j.femsre.2004.06.005
  • [22] Shirling, E. B., Gottlieb, D., "Methods for characterization of Streptomyces species", International Journal of Systematic Bacteriology, 16(3): 313–340, (1966).
  • [23] Williams, S.T., Goodfellow, M., Wellington, E.M.H., Vickers, J.C., Alderson, G., Sneath, P.H.A., Mortimer, A.M., “A probability matrix for identification of some Streptomycetes”, Journal of General Microbiology, 129: 1815–1830, (1983).
  • [24] Kampfer, P., Kroppenstedt, R. M., Dott, W., "A numerical classification of the genera Streptomyces and Streptoverticillium using miniaturized physiological tests", Journal of General Microbiology, 137(8): 1831–1891, (1991).
  • [25] Arai, M., Tomoda, H., Matsumoto, A., Takahashi, Y., Woodruff, B. H., Ishiguro, N., Omura, S., "Genus Streptomyces Waksman and Henrici 1943", Bergey’s Manual of Systematic Bacteriology, 4(7): 2452–2492, (1989).
  • [26] Lane, D. J., "16S/23S rRNA Sequencing", Nucleic Acid Techniques In Bacterial Systematics, John Wiley and Sons, Chichester, England, 115–175, (1991).
  • [27] Tamura, K., Stecher, G., Kumar, S., "MEGA11: Molecular Evolutionary Genetics Analysis Version 11", Molecular Biology and Evolution, 38(7): 3022–3027, (2021). DOI: https://doi.org/10.1093/molbev/msab120
  • [28] Nei, M., Naruya, S., "The Neighbor-joining Method: A New Method for Reconstructing Phylogenetic Trees", Molecular Biology and Evolution, 4(4): 406–425, (1987).
  • [29] Jukes, T. H., Cantor, C. R., “Evolution of Protein Molecules. Mammalian Protein Metabolism”, 3: 21–132, (1969).
  • [30] Felstein, J., "Confidence Limits on Phylogenies : An Approach Using the Bootstrap", Evolution, 39(4): 783–791, (1985).
  • [31] Azeri, C., Tamer, A. U., Oskay, M., "Thermoactive cellulase-free xylanase production from alkaliphilic Bacillus strains using various agro-residues and their potential in biobleaching of kraft pulp", African Journal of Biotechnology, 9(1): 063–072, (2010).
  • [32] Lan Pham, P., Taillandier, P., Delmas, M., Strehaiano, P., "Production of xylanases by Bacillus polymyxa using lignocellulosic wastes", Industrial Crops and Products, 7(2–3): 195–203, (1998). DOI: https://doi.org/10.1016/S0926-6690(97)00048-4
  • [33] Dyshlyuk, L., Ulrikh, E., Agafonova, S., Kazimirchenko, O., "Xylooligosaccharides from Biomass Lignocellulose: Properties, Sources and Production Methods", Reviews in Agricultural Science, 12: 1–12, (2024). DOI: https://doi.org/10.7831/ras.12.0_1
  • [34] Miller, G. L., "Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar", Analytical Chemistry, 31(3): 426–428, (1959).
  • [35] Kim, J. H., Chi, W. J., "Molecular and Biochemical Characterization of Xylanase Produced by Streptomyces viridodiastaticus MS9, a Newly Isolated Soil Bacterium", Journal of Microbiology and Biotechnology, 34(1): 176–184, (2024). DOI: https://doi.org/10.4014/jmb.2309.09029
  • [36] Adigüzel, A. O., Tunçer, M., "Production, Characterization and Application of a Xylanase from Streptomyces sp. AOA40 in Fruit Juice and Bakery Industries", Food Biotechnology, 30(3): 189–218, (2016). DOI: https://doi.org/10.1080/08905436.2016.1199383
  • [37] Sanjivkumar, M., Silambarasan, T. S., Palavesam, A., Immanuel, G., "Biosynthesis, purification and characterization of β-1,4-xylanase from a novel mangrove associated actinobacterium Streptomyces olivaceus (MSU3) and its applications", Protein Expression and Purification, 130: 1–12, (2017). DOI: https://doi.org/10.1016/j.pep.2016.09.017
  • [38] Sanjivkumar, M., Silambarasan, T., Balagurunathan, R., Immanuel, G., "Biosynthesis, molecular modelling and statistical optimization of xylanase from a mangrove associated actinobacterium Streptomyces variabilis (MAB3) using Box-Behnken design with its bioconversion efficacy", International Journal of Biological Macromolecules, 118: 195–208, (2018). DOI: https://doi.org/10.1016/j.ijbiomac.2018.06.063
  • [39] Gama, A. R., Brito-Cunha, C. C. Q., Campos, I. T. N., de Souza, G. R. L., Carneiro, L. C., Bataus, L. A. M., "Streptomyces thermocerradoensis I3 secretes a novel bifunctional xylanase/endoglucanase under solid-state fermentation", Biotechnology Progress, 36(2): 1–8, (2020). DOI: https://doi.org/10.1002/btpr.2934
  • [40] Brito-Cunha, C. C. D. Q., De Campos, I. T. N., De Faria, F. P., Bataus, L. A. M., "Screening and xylanase production by Streptomyces sp. grown on lignocellulosic wastes", Applied Biochemistry and Biotechnology, 170(3), 598–608, (2013). DOI: https://doi.org/10.1007/s12010-013-0193-3
  • [41] Danso, B., Ali, S. S., Xie, R., Sun, J., "Valorisation of wheat straw and bioethanol production by a novel xylanase- and cellulase-producing Streptomyces strain isolated from the wood-feeding termite, Microcerotermes species", Fuel, 310: 122333, (2022). DOI: https://doi.org/10.1016/j.fuel.2021.122333
  • [42] Sá-Pereira, P., Mesquita, A., Duarte, J. C., Barros, M. R. A., Costa-Ferreira, M., "Rapid production of thermostable cellulase-free xylanase by a strain of Bacillus subtilis and its properties", Enzyme and Microbial Technology, 30(7): 924–933, (2002). DOI: https://doi.org/10.1016/S0141-0229(02)00034-0
  • [43] Mander, P., Choi, Y. H., G.c., P., Choi, Y. S., Hong, J. H., Cho, S. S., Yoo, J. C., "Biochemical characterization of xylanase produced from Streptomyces sp. CS624 using an agro residue substrate", Process Biochemistry, 49(3): 451–456, (2014). DOI: https://doi.org/10.1016/j.procbio.2013.12.011
  • [44] Rahman, M. A., Choi, Y. H., Pradeep, G. C., Choi, Y. S., Choi, E. J., Cho, S. S., Yoo, J. C., "A novel low molecular weight endo-xylanase from Streptomyces sp. CS628 cultivated in wheat bran", Applied Biochemistry and Biotechnology, 173(6): 1469–1480, (2014). DOI: https://doi.org/10.1007/s12010-014-0916-0
  • [45] Kumar, V., Chhabra, D., Shukla, P., "Xylanase production from Thermomyces lanuginosus VAPS-24 using low-cost agro-industrial residues via hybrid optimization tools and its potential use for saccharification", Bioresource Technology, 243: 1009–1019, (2017). DOI: https://doi.org/10.1016/j.biortech.2017.07.094
  • [46] Alokika, Singh, B., "Production, characteristics, and biotechnological applications of microbial xylanases", Applied Microbiology and Biotechnology, 103(21–22): 8763–8784, (2019). DOI: https://doi.org/10.1007/s00253-019-10108-6
  • [47] Sinjaroonsak, S., Chaiyaso, T., H-Kittikun, A., "Optimization of Cellulase and Xylanase Productions by Streptomyces thermocoprophilus Strain TC13W Using Oil Palm Empty Fruit Bunch and Tuna Condensate as Substrates", Applied Biochemistry and Biotechnology, 189(1): 76–86, (2019). DOI: https://doi.org/10.1007/s12010-019-02986-3
  • [48] Khangkhachit, W., Suyotha, W., Leamdum, C., Prasertsan, P., "Production of thermostable xylanase using Streptomyces thermocarboxydus ME742 and application in enzymatic conversion of xylan from oil palm empty fruit bunch to xylooligosaccharides", Biocatalysis and Agricultural Biotechnology, 37: 102180, (2021). DOI: https://doi.org/10.1016/j.bcab.2021.102180
  • [49] Poornima, S., Divya, P., Karmegam, N., Karthik, V., Subbaiya, R., "Aqueous two-phase partitioning and characterization of xylanase produced by Streptomyces geysiriensis from low-cost lignocellulosic substrates". Journal of Bioscience and Bioengineering, 130(6): 571–576, (2020). DOI: https://doi.org/10.1016/j.jbiosc.2020.07.008
  • [50] Sinjaroonsak, S., Chaiyaso, T., H-Kittikun, A., "Optimization of Cellulase and Xylanase Productions by Streptomyces thermocoprophilus TC13W Using Low-Cost Pretreated Oil Palm Empty Fruit Bunch", Waste and Biomass Valorization, 11(8): 3925–3936, (2020). DOI: https://doi.org/10.1007/s12649-019-00720-y
  • [51] Wu, H., Cheng, X., Zhu, Y., Zeng, W., Chen, G., Liang, Z., "Purification and characterization of a cellulase-free, thermostable endo-xylanase from Streptomyces griseorubens LH-3 and its use in biobleaching on eucalyptus kraft pulp", Journal of Bioscience and Bioengineering, 125(1): 46–51, (2018). DOI: https://doi.org/10.1016/j.jbiosc.2017.08.006
  • [52] Li, X., She, Y., Sun, B., Song, H., Zhu, Y., Lv, Y., Song, H., "Purification and characterization of a cellulase-free, thermostable xylanase from Streptomyces rameus L2001 and its biobleaching effect on wheat straw pulp", Biochemical Engineering Journal, 52(1): 71–78, (2010). DOI: https://doi.org/10.1016/j.bej.2010.07.006
Year 2025, Early View, 1 - 1
https://doi.org/10.35378/gujs.1489525

Abstract

References

  • [1] Horikoshi, K., "Alkaliphiles: Some Applications of Their Products for Biotechnology", Microbiology and Molecular Biology Reviews, 63(4): 735–750, (1999). DOI: https://doi.org/10.1128/mmbr.63.4.735-750.1999
  • [2] Kaur, D., Joshi, A., Sharma, V., Batra, N., Sharma, A. K., "An insight into microbial sources, classification, and industrial applications of xylanases: A rapid review", Biotechnology and Applied Biochemistry, 70(4): 1489–1503, (2023). DOI: https://doi.org/10.1002/bab.2469
  • [3] Puchart, V., Biely, P., "A simple enzymatic synthesis of 4-nitrophenyl β-1,4-d-xylobioside, a chromogenic substrate for assay and differentiation of endoxylanases", Journal of Biotechnology, 128(3): 576–586, (2007). DOI: https://doi.org/10.1016/j.jbiotec.2006.12.011
  • [4] Beg, Q. K., Kapoor, M., Mahajan, L., Hoondal, G. S., "Microbial xylanases and their industrial applications: A review", Applied Microbiology and Biotechnology, 56(3–4): 326–338, (2001). DOI: https://doi.org/10.1007/s002530100704
  • [5] Srinivasan, M. C., Rele, M. V., "Microbial xylanases for the paper industry", Current Science, 77(1): 137–142, (1999). DOI: https://www.jstor.org/stable/24102921
  • [6] Akram, F., Fatima, T., Ibrar, R., Shabbir, I., Shah, F. I., Haq, I., "Trends in the development and current perspective of thermostable bacterial hemicellulases with their industrial endeavours: A review", International Journal of Biological Macromolecules, 265(P1): 130993, (2024). DOI: https://doi.org/10.1016/j.ijbiomac.2024.130993
  • [7] Shrivastava, S., Shukla, P., Poddar, R., "In silico studies for evaluating conservation homology among family 11 xylanases from Thermomyces lanuginosus", Journal of Applied Sciences in Environmental Sanitation, 2(3): 70–76, (2008).
  • [8] Dhiman, S. S., Sharma, J., Battan, B., "Pretreatment processing of fabrics by alkalothermophilic xylanase from Bacillus stearothermophilus SDX", Enzyme and Microbial Technology, 43(3): 262–269, (2008). DOI: https://doi.org/10.1016/j.enzmictec.2008.03.016
  • [9] Christov, L., Biely, P., Kalogeris, E., Christakopoulos, P., Prior, B. A., Bhat, M. K., "Effects of purified endo-β-1,4-xylanases of family 10 and 11 and acetyl xylan esterases on eucalypt sulfite dissolving pulp", Journal of Biotechnology, 83(3): 231–244, (2000). DOI: https://doi.org/10.1016/S0168-1656(00)00324-2
  • [10] Adiguzel, G., Faiz, O., Sisecioglu, M., Sari, B., Baltaci, O., Akbulut, S., Adiguzel, A., "A novel endo-β-1,4-xylanase from Pediococcus acidilactici GC25; purification, characterization and application in clarification of fruit juices", International Journal of Biological Macromolecules, 129: 571–578, (2019). DOI: https://doi.org/10.1016/j.ijbiomac.2019.02.054
  • [11] Mendonça, M., Barroca, M., Collins, T., "Endo-1,4-β-xylanase-containing glycoside hydrolase families: characteristics, singularities and similarities", Biotechnology Advances, 65(108148), (2023). DOI: https://doi.org/10.1016/j.biotechadv.2023.108148
  • [12] Gilbert, H. J., Hazlewood, G. P., "Bacterial cellulases and xylanases", Journal of General Microbiology, 139(2): 187–194, (1993).
  • [13] Ho, H.L., "Biotechnology of Microbial Xylanase: Overview", Research Advancements in Pharmaceutical, Nutritional, and Industrial Enzymology, 294-325, (2018). DOI: https://doi.org/10.4018/978-1-5225-5237-6.ch013
  • [14] Uffen, R. L., "Xylan degradation: A glimpse at microbial diversity", Journal of Industrial Microbiology and Biotechnology, 19(1): 1–6, (1997). DOI: https://doi.org/10.1038/sj.jim.2900417
  • [15] Sari, B., Faiz, O., Genc, B., Sisecioglu, M., Adiguzel, A., Adiguzel, G., "New xylanolytic enzyme from Geobacillus galactosidasius BS61 from a geothermal resource in Turkey", International Journal of Biological Macromolecules, 119: 1017–1026, (2018). DOI: https://doi.org/10.1016/j.ijbiomac.2018.07.166
  • [16] Shallom, D., Shoham, Y., "Microbial hemicellulases", Current Opinion in Microbiology, 6(3): 219–228, (2003). DOI: https://doi.org/10.1016/S1369-5274(03)00056-0
  • [17] Gomes, J., Gomes, I., Terler, K., Gubala, N., Ditzelmüller, G., Steiner, W., "Optimisation of culture medium and conditions for α-L-arabinofuranosidase production by the extreme thermophilic eubacterium Rhodothermus marinus", Enzyme and Microbial Technology, 27(6): 414–422, (2000). DOI: https://doi.org/10.1016/S0141-0229(00)00229-5
  • [18] Oskay, M., "Comparison of Streptomyces diversity between agricultural and non-agricultural soils by using various culture media", Scientific Research and Essays, 4(10): 997–1005, (2009).
  • [19] Oskay, M., Tamer, A. Ü., Azeri, C., "Antibacterial activity of some actinomycetes isolated from farming soils of Turkey", African Journal of Biotechnology, 3(9): 441–446, (2004).
  • [20] Techapun, C., Sinsuwongwat, S., Poosaran, N., Watanabe, M., Sasaki, K., "Production of a cellulase-free xylanase from agricultural waste materials by a thermotolerant Streptomyces sp.", Biotechnology Letters, 23(20): 1685–1689, (2001). DOI: https://doi.org/10.1023/A:1012448229555
  • [21] Collins, T., Gerday, C., Feller, G., "Xylanases, xylanase families and extremophilic xylanases", FEMS Microbiology Reviews, 29(1): 3–23, (2005). DOI: https://doi.org/10.1016/j.femsre.2004.06.005
  • [22] Shirling, E. B., Gottlieb, D., "Methods for characterization of Streptomyces species", International Journal of Systematic Bacteriology, 16(3): 313–340, (1966).
  • [23] Williams, S.T., Goodfellow, M., Wellington, E.M.H., Vickers, J.C., Alderson, G., Sneath, P.H.A., Mortimer, A.M., “A probability matrix for identification of some Streptomycetes”, Journal of General Microbiology, 129: 1815–1830, (1983).
  • [24] Kampfer, P., Kroppenstedt, R. M., Dott, W., "A numerical classification of the genera Streptomyces and Streptoverticillium using miniaturized physiological tests", Journal of General Microbiology, 137(8): 1831–1891, (1991).
  • [25] Arai, M., Tomoda, H., Matsumoto, A., Takahashi, Y., Woodruff, B. H., Ishiguro, N., Omura, S., "Genus Streptomyces Waksman and Henrici 1943", Bergey’s Manual of Systematic Bacteriology, 4(7): 2452–2492, (1989).
  • [26] Lane, D. J., "16S/23S rRNA Sequencing", Nucleic Acid Techniques In Bacterial Systematics, John Wiley and Sons, Chichester, England, 115–175, (1991).
  • [27] Tamura, K., Stecher, G., Kumar, S., "MEGA11: Molecular Evolutionary Genetics Analysis Version 11", Molecular Biology and Evolution, 38(7): 3022–3027, (2021). DOI: https://doi.org/10.1093/molbev/msab120
  • [28] Nei, M., Naruya, S., "The Neighbor-joining Method: A New Method for Reconstructing Phylogenetic Trees", Molecular Biology and Evolution, 4(4): 406–425, (1987).
  • [29] Jukes, T. H., Cantor, C. R., “Evolution of Protein Molecules. Mammalian Protein Metabolism”, 3: 21–132, (1969).
  • [30] Felstein, J., "Confidence Limits on Phylogenies : An Approach Using the Bootstrap", Evolution, 39(4): 783–791, (1985).
  • [31] Azeri, C., Tamer, A. U., Oskay, M., "Thermoactive cellulase-free xylanase production from alkaliphilic Bacillus strains using various agro-residues and their potential in biobleaching of kraft pulp", African Journal of Biotechnology, 9(1): 063–072, (2010).
  • [32] Lan Pham, P., Taillandier, P., Delmas, M., Strehaiano, P., "Production of xylanases by Bacillus polymyxa using lignocellulosic wastes", Industrial Crops and Products, 7(2–3): 195–203, (1998). DOI: https://doi.org/10.1016/S0926-6690(97)00048-4
  • [33] Dyshlyuk, L., Ulrikh, E., Agafonova, S., Kazimirchenko, O., "Xylooligosaccharides from Biomass Lignocellulose: Properties, Sources and Production Methods", Reviews in Agricultural Science, 12: 1–12, (2024). DOI: https://doi.org/10.7831/ras.12.0_1
  • [34] Miller, G. L., "Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar", Analytical Chemistry, 31(3): 426–428, (1959).
  • [35] Kim, J. H., Chi, W. J., "Molecular and Biochemical Characterization of Xylanase Produced by Streptomyces viridodiastaticus MS9, a Newly Isolated Soil Bacterium", Journal of Microbiology and Biotechnology, 34(1): 176–184, (2024). DOI: https://doi.org/10.4014/jmb.2309.09029
  • [36] Adigüzel, A. O., Tunçer, M., "Production, Characterization and Application of a Xylanase from Streptomyces sp. AOA40 in Fruit Juice and Bakery Industries", Food Biotechnology, 30(3): 189–218, (2016). DOI: https://doi.org/10.1080/08905436.2016.1199383
  • [37] Sanjivkumar, M., Silambarasan, T. S., Palavesam, A., Immanuel, G., "Biosynthesis, purification and characterization of β-1,4-xylanase from a novel mangrove associated actinobacterium Streptomyces olivaceus (MSU3) and its applications", Protein Expression and Purification, 130: 1–12, (2017). DOI: https://doi.org/10.1016/j.pep.2016.09.017
  • [38] Sanjivkumar, M., Silambarasan, T., Balagurunathan, R., Immanuel, G., "Biosynthesis, molecular modelling and statistical optimization of xylanase from a mangrove associated actinobacterium Streptomyces variabilis (MAB3) using Box-Behnken design with its bioconversion efficacy", International Journal of Biological Macromolecules, 118: 195–208, (2018). DOI: https://doi.org/10.1016/j.ijbiomac.2018.06.063
  • [39] Gama, A. R., Brito-Cunha, C. C. Q., Campos, I. T. N., de Souza, G. R. L., Carneiro, L. C., Bataus, L. A. M., "Streptomyces thermocerradoensis I3 secretes a novel bifunctional xylanase/endoglucanase under solid-state fermentation", Biotechnology Progress, 36(2): 1–8, (2020). DOI: https://doi.org/10.1002/btpr.2934
  • [40] Brito-Cunha, C. C. D. Q., De Campos, I. T. N., De Faria, F. P., Bataus, L. A. M., "Screening and xylanase production by Streptomyces sp. grown on lignocellulosic wastes", Applied Biochemistry and Biotechnology, 170(3), 598–608, (2013). DOI: https://doi.org/10.1007/s12010-013-0193-3
  • [41] Danso, B., Ali, S. S., Xie, R., Sun, J., "Valorisation of wheat straw and bioethanol production by a novel xylanase- and cellulase-producing Streptomyces strain isolated from the wood-feeding termite, Microcerotermes species", Fuel, 310: 122333, (2022). DOI: https://doi.org/10.1016/j.fuel.2021.122333
  • [42] Sá-Pereira, P., Mesquita, A., Duarte, J. C., Barros, M. R. A., Costa-Ferreira, M., "Rapid production of thermostable cellulase-free xylanase by a strain of Bacillus subtilis and its properties", Enzyme and Microbial Technology, 30(7): 924–933, (2002). DOI: https://doi.org/10.1016/S0141-0229(02)00034-0
  • [43] Mander, P., Choi, Y. H., G.c., P., Choi, Y. S., Hong, J. H., Cho, S. S., Yoo, J. C., "Biochemical characterization of xylanase produced from Streptomyces sp. CS624 using an agro residue substrate", Process Biochemistry, 49(3): 451–456, (2014). DOI: https://doi.org/10.1016/j.procbio.2013.12.011
  • [44] Rahman, M. A., Choi, Y. H., Pradeep, G. C., Choi, Y. S., Choi, E. J., Cho, S. S., Yoo, J. C., "A novel low molecular weight endo-xylanase from Streptomyces sp. CS628 cultivated in wheat bran", Applied Biochemistry and Biotechnology, 173(6): 1469–1480, (2014). DOI: https://doi.org/10.1007/s12010-014-0916-0
  • [45] Kumar, V., Chhabra, D., Shukla, P., "Xylanase production from Thermomyces lanuginosus VAPS-24 using low-cost agro-industrial residues via hybrid optimization tools and its potential use for saccharification", Bioresource Technology, 243: 1009–1019, (2017). DOI: https://doi.org/10.1016/j.biortech.2017.07.094
  • [46] Alokika, Singh, B., "Production, characteristics, and biotechnological applications of microbial xylanases", Applied Microbiology and Biotechnology, 103(21–22): 8763–8784, (2019). DOI: https://doi.org/10.1007/s00253-019-10108-6
  • [47] Sinjaroonsak, S., Chaiyaso, T., H-Kittikun, A., "Optimization of Cellulase and Xylanase Productions by Streptomyces thermocoprophilus Strain TC13W Using Oil Palm Empty Fruit Bunch and Tuna Condensate as Substrates", Applied Biochemistry and Biotechnology, 189(1): 76–86, (2019). DOI: https://doi.org/10.1007/s12010-019-02986-3
  • [48] Khangkhachit, W., Suyotha, W., Leamdum, C., Prasertsan, P., "Production of thermostable xylanase using Streptomyces thermocarboxydus ME742 and application in enzymatic conversion of xylan from oil palm empty fruit bunch to xylooligosaccharides", Biocatalysis and Agricultural Biotechnology, 37: 102180, (2021). DOI: https://doi.org/10.1016/j.bcab.2021.102180
  • [49] Poornima, S., Divya, P., Karmegam, N., Karthik, V., Subbaiya, R., "Aqueous two-phase partitioning and characterization of xylanase produced by Streptomyces geysiriensis from low-cost lignocellulosic substrates". Journal of Bioscience and Bioengineering, 130(6): 571–576, (2020). DOI: https://doi.org/10.1016/j.jbiosc.2020.07.008
  • [50] Sinjaroonsak, S., Chaiyaso, T., H-Kittikun, A., "Optimization of Cellulase and Xylanase Productions by Streptomyces thermocoprophilus TC13W Using Low-Cost Pretreated Oil Palm Empty Fruit Bunch", Waste and Biomass Valorization, 11(8): 3925–3936, (2020). DOI: https://doi.org/10.1007/s12649-019-00720-y
  • [51] Wu, H., Cheng, X., Zhu, Y., Zeng, W., Chen, G., Liang, Z., "Purification and characterization of a cellulase-free, thermostable endo-xylanase from Streptomyces griseorubens LH-3 and its use in biobleaching on eucalyptus kraft pulp", Journal of Bioscience and Bioengineering, 125(1): 46–51, (2018). DOI: https://doi.org/10.1016/j.jbiosc.2017.08.006
  • [52] Li, X., She, Y., Sun, B., Song, H., Zhu, Y., Lv, Y., Song, H., "Purification and characterization of a cellulase-free, thermostable xylanase from Streptomyces rameus L2001 and its biobleaching effect on wheat straw pulp", Biochemical Engineering Journal, 52(1): 71–78, (2010). DOI: https://doi.org/10.1016/j.bej.2010.07.006
There are 52 citations in total.

Details

Primary Language English
Subjects Industrial Microbiology, Bacteriology
Journal Section Research Article
Authors

Mustafa Oskay 0000-0001-8693-5621

Early Pub Date January 3, 2025
Publication Date
Submission Date May 24, 2024
Acceptance Date December 10, 2024
Published in Issue Year 2025 Early View

Cite

APA Oskay, M. (2025). Isolation and Molecular Identification of Streptomyces tendae and its Xylanase Production Using Cost-Effective Agro‐Residues. Gazi University Journal of Science1-1. https://doi.org/10.35378/gujs.1489525
AMA Oskay M. Isolation and Molecular Identification of Streptomyces tendae and its Xylanase Production Using Cost-Effective Agro‐Residues. Gazi University Journal of Science. Published online January 1, 2025:1-1. doi:10.35378/gujs.1489525
Chicago Oskay, Mustafa. “Isolation and Molecular Identification of Streptomyces Tendae and Its Xylanase Production Using Cost-Effective Agro‐Residues”. Gazi University Journal of Science, January (January 2025), 1-1. https://doi.org/10.35378/gujs.1489525.
EndNote Oskay M (January 1, 2025) Isolation and Molecular Identification of Streptomyces tendae and its Xylanase Production Using Cost-Effective Agro‐Residues. Gazi University Journal of Science 1–1.
IEEE M. Oskay, “Isolation and Molecular Identification of Streptomyces tendae and its Xylanase Production Using Cost-Effective Agro‐Residues”, Gazi University Journal of Science, pp. 1–1, January 2025, doi: 10.35378/gujs.1489525.
ISNAD Oskay, Mustafa. “Isolation and Molecular Identification of Streptomyces Tendae and Its Xylanase Production Using Cost-Effective Agro‐Residues”. Gazi University Journal of Science. January 2025. 1-1. https://doi.org/10.35378/gujs.1489525.
JAMA Oskay M. Isolation and Molecular Identification of Streptomyces tendae and its Xylanase Production Using Cost-Effective Agro‐Residues. Gazi University Journal of Science. 2025;:1–1.
MLA Oskay, Mustafa. “Isolation and Molecular Identification of Streptomyces Tendae and Its Xylanase Production Using Cost-Effective Agro‐Residues”. Gazi University Journal of Science, 2025, pp. 1-1, doi:10.35378/gujs.1489525.
Vancouver Oskay M. Isolation and Molecular Identification of Streptomyces tendae and its Xylanase Production Using Cost-Effective Agro‐Residues. Gazi University Journal of Science. 2025:1-.