Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2022, Cilt: 35 Sayı: 3, 1129 - 1138, 01.09.2022
https://doi.org/10.35378/gujs.947678

Öz

Kaynakça

  • [1] Qader, I. N., Kök, M., Dağdelen, F., Aydogdu, Y., "A Review of Smart Materials: Researches and Applications", El-Cezerî Journal of Science and Engineering, 6(3): 755-788, (2019).
  • [2] Dagdelen, F., Aldalawi, M. A. K., Kok, M., Qader, I. N., "Influence of Ni addition and heat treatment on phase transformation temperatures and microstructures of a ternary CuAlCr alloy", The European Physical Journal Plus, 134(2): 66, (2019).
  • [3] Kök, M., Qader, I. N., Mohammed, S. S., Öner, E., Dağdelen, F., Aydogdu, Y., "Thermal stability and some thermodynamics analysis of heat treated quaternary CuAlNiTa shape memory alloy", Materials Research Express, 7(1): 015702, (2019).
  • [4] Mohammed, S. S., Mediha, K., Qader, I. N., Dağdelen, F., "The developments of piezoelectric materials and shape memory alloys in robotic actuator systems", Avrupa Bilim ve Teknoloji Dergisi, (17): 1014-1030, (2019).
  • [5] Hartl, D. J., Lagoudas, D. C., "Aerospace applications of shape memory alloys", Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 221(4): 535-552, (2007).
  • [6] Song, G., Ma, N., Li, H. N., "Applications of shape memory alloys in civil structures", Engineering structures, 28(9): 1266-1274, (2006).
  • [7] Jani, J. M., Leary, M., Subic, A., editors. "Shape memory alloys in automotive applications. Applied Mechanics and Materials", Trans Tech Publications, (2014).
  • [8] Barbarino, S., Flores, E. S., Ajaj, R. M., Dayyani, I., Friswell, M. I., "A review on shape memory alloys with applications to morphing aircraft", Smart Materials and Structures, 23(6): 063001, (2014).
  • [9] Dutta, R., Madangopal, K., Gadiyar, H., Banerjee, S., "Biocompatibility of Ni–Ti shape memory alloy", British Corrosion Journal, 28(3): 217-221, (1993).
  • [10] Es-Souni, M., Es-Souni, M., Fischer-Brandies, H., "Assessing the biocompatibility of NiTi shape memory alloys used for medical applications", Analytical and bioanalytical chemistry, 381(3): 557-567, (2005).
  • [11] Aslan, N., Ceylan, B., Koç, M. M., Findik, F., "Metallic nanoparticles as X-Ray computed tomography (CT) contrast agents: A review", Journal of Molecular Structure, 1219: 128599, (2020).
  • [12] Koç, M. M., Aslan, N., Kao, A. P., Barber,, A. H., "Evaluation of X-ray tomography contrast agents: A review of production, protocols, and biological applications", Microscopy Research and Technique, 82(6): 812-848, (2019).
  • [13] Dagdelen, F., Balci, E., Qader, I. N., Ozen, E., Kok, M., Kanca, M. S., Abdullah, S. S., Mohammed, S. S., "Influence of the Nb Content on the Microstructure and Phase Transformation Properties of NiTiNb Shape Memory Alloys", JOM, 72(4): 1664-1672, (2020).
  • [14] Ilhan, M., Koç, M. M., Coşkun, B., Erkovan, M., Yakuphanoğlu, F., "Cd dopant effect on structural and optoelectronic properties of TiO 2 solar detectors", Journal of Materials Science: Materials in Electronics, 32(2): 2346-2365, (2021).
  • [15] Kara, F., Kurban, M., Coşkun, B., "Evaluation of electronic transport and optical response of two-dimensional Fe-doped TiO2 thin films for photodetector applications", Optik, 210: 164605, (2020).
  • [16] Davis, J. R. Handbook of materials for medical devices. 1st ed., (2003).
  • [17] Mohammed, S., Kök, M., Çirak, Z., Qader, I., Dağdelen, F., Zardawi, H., "The relationship between cobalt amount and oxidation parameters in NiTiCo shape memory alloys", Physics of Metals and Metallography, 121(14): 1411-1417, (2020).
  • [18] Qader, I. N., Öner, E., Kok, M., Mohammed, S. S., Dağdelen, F., Kanca, M. S., Aydoğdu Y., "Mechanical and Thermal Behavior of Cu 84− x Al 13 Ni 3 Hf x Shape Memory Alloys", Iranian Journal of Science and Technology, Transactions A: Science, 45(1): 343-349, (2021).
  • [19] Mohammed, S. S., Kok, M., Qader, I. N., Kanca, M. S., Ercan, E., Dağdelen, F., Aydoğdu, Y., "Influence of Ta Additive into Cu84−xAl13Ni3 (wt%) Shape Memory Alloy Produced by Induction Melting", Iranian Journal of Science and Technology, Transactions A: Science, 44(4): 1167-1175, (2020).
  • [20] Kim, H. Y., Sasaki, T., Okutsu, K., Kim, J. I., Inamura, T., Hosoda, H., Miyazaki, S., "Texture and shape memory behavior of Ti–22Nb–6Ta alloy", Acta materialia, 54(2): 423-433, (2006).
  • [21] Huang, H.H., Chiu, Y.H., Lee, T.H., Wu, S.C., Yang, H.W., Su, K.H., Hsu, C.C., "Ion release from NiTi orthodontic wires in artificial saliva with various acidities", Biomaterials, 24(20): 3585-3592, (2003).
  • [22] Ramarolahy, A., Castany, P., Gloriant, T., Prima, F., Laheurte, P., Eberhard,t A., Patoor, E., editors. "Synthesis and characterisation of new superelastic and low elastic modulus Ti-Nb-X alloys for biomedical application", Advanced Materials Research, Trans Tech Publications, 409, 170-174, (2011).
  • [23] Al-Zain, Y., Kim, H., Hosoda, H., Nam, T., Miyazaki, S., "Shape memory properties of Ti–Nb–Mo biomedical alloys", Acta Materialia, 58(12): 4212-4223, (2010).
  • [24] Ping, D., Cui, C., Yin, F., Yamabe-Mitarai, Y., "TEM investigations on martensite in a Ti–Nb-based shape memory alloy", Scripta Materialia, 54(7): 1305-1310, (2006).
  • [25] Fukui, Y., Inamura, T., Hosoda, H., Wakashima, K., Miyazaki, S., "Mechanical properties of a Ti-Nb-Al shape memory alloy", Materials Transactions, 45(4): 1077-1082, (2004).
  • [26] Zhang, J., Sun, F., Hao, Y., Gozdecki, N., Lebrun, E., Vermaut, P., Portier, R., Gloriant, T., Laheurte, P., Prima, F., "Influence of equiatomic Zr/Nb substitution on superelastic behavior of Ti–Nb–Zr alloy", Materials Science and Engineering: A, 563: 78-85, (2013).
  • [27] Hussein, A. H., Gepreel, M. A.-H., Gouda, M. K., Hefnawy, A. M., Kandil, S. H., "Biocompatibility of new Ti–Nb–Ta base alloys", Materials Science and Engineering: C, 61: 574-578, (2016).
  • [28] Meng, Q.-K., Huo, Y.-F., Ma, W., Sui, Y.-W., Zhang, J.Y., Guo, S., Zhao, X.Q., "Design and fabrication of a low modulus β-type Ti–Nb–Zr alloy by controlling martensitic transformation", Rare Metals, 37(9): 789-794, (2018).
  • [29] Wang, B., Zheng, Y., Zhao, L., "Effects of Sn content on the microstructure, phase constitution and shape memory effect of Ti–Nb–Sn alloys", Materials Science and Engineering: A, 486(1-2): 146-151, (2008).
  • [30] Kim, H., Hashimoto, S., Kim, J., Inamura, T., Hosoda, H., Miyazaki, S., "Effect of Ta addition on shape memory behavior of Ti–22Nb alloy", Materials Science and Engineering: A, 417(1-2): 120-128, (2006).
  • [31] Hao, Y., Li, S., Sun, S., Zheng, C., Yang, R., "Elastic deformation behaviour of Ti–24Nb–4Zr–7.9 Sn for biomedical applications", Acta biomaterialia, 3(2): 277-286, (2007).
  • [32] Tatar, C., Haji, A. I., Qader, I. N., "Heat Treatment Effects on Microstructural and Thermal Properties of High Cu Content NiTiCu Shape Memory Alloy", Iranian Journal of Science and Technology, Transactions A: Science, (2021).
  • [33] Qader, I. N., Kok, M., Cirak, Z. D., "The effects of substituting Sn for Ni on the thermal and some other characteristics of NiTiSn shape memory alloys", Journal of Thermal Analysis and Calorimetry, 145(2): 279-288, (2021).
  • [34] Tatar, C., Acar, R., Qader, I. N., "Investigation of thermodynamic and microstructural characteristics of NiTiCu shape memory alloys produced by arc-melting method", The European Physical Journal Plus, 135(3): 311, (2020).
  • [35] Kök, M., Aydoğdu, K., Kanca, M. S., Qader, I. N., Öner, E., Coşkun, M., "Effects of Aging on Magnetic and Thermal Characteristics of NiMnCoSn Magnetic Shape Memory Alloys", Iranian Journal of Science and Technology, Transactions A: Science, (2021).
  • [36] Balci, E., Dagdelen, F., Qader, I. N., Kok M., "Effects of substituting Nb with V on thermal analysis and biocompatibility assessment of quaternary NiTiNbV SMA", The European Physical Journal Plus, 136(2): 145, (2021).

Effect of Ta Content on Microstructure and Phase Transformation Temperatures of Ti75.5-Nb25.5 (%at.) Alloy

Yıl 2022, Cilt: 35 Sayı: 3, 1129 - 1138, 01.09.2022
https://doi.org/10.35378/gujs.947678

Öz

β-titanium shape memory alloys are used as shape memory-based biomedical applications and superelastic materials because they are made up of non-toxic components. Also, their behaviors are more semilar with that of human bone and dental biological tissues, such as biocompatibility, superior corrosion resistance, low density, and low modulus of elasticity. In the current study, the effect of Ta additive on the physical properties of Ti-Nb alloy has been investigated. Ti-Nb-Ta alloy samples were produced such that the Tantalum (Ta) element was substituted instead of Niobium (Nb), and the induction arc melting was used to melting the mixed powders. To investigate the crystal structure, microstructure, and phase transformation temperatures of all samples, the X-Ray Diffraction (XRD), Scanning Electron Microscopic (SEM), and Diffraction Scanning Calorimetry (DSC) measurements have been used. Both β-rich and α peaks were observed in the XRD and SEM measurements. Also, the DSC results revealed that the Ti-Nb-Ta alloys have only austenite transformation temperatures and their phase austenite phase transformation were decreased by the effect of Ta additive, additionally, the enthalpy change in〖 E〗_3 sample ( Ti_75.5 Nb_22.5 Ta_2 (%at)) has the highest value, while E_4 sample ( Ti_75.5 Nb_21.5 Ta_3 (%at)) has the lowest respective value. 

Kaynakça

  • [1] Qader, I. N., Kök, M., Dağdelen, F., Aydogdu, Y., "A Review of Smart Materials: Researches and Applications", El-Cezerî Journal of Science and Engineering, 6(3): 755-788, (2019).
  • [2] Dagdelen, F., Aldalawi, M. A. K., Kok, M., Qader, I. N., "Influence of Ni addition and heat treatment on phase transformation temperatures and microstructures of a ternary CuAlCr alloy", The European Physical Journal Plus, 134(2): 66, (2019).
  • [3] Kök, M., Qader, I. N., Mohammed, S. S., Öner, E., Dağdelen, F., Aydogdu, Y., "Thermal stability and some thermodynamics analysis of heat treated quaternary CuAlNiTa shape memory alloy", Materials Research Express, 7(1): 015702, (2019).
  • [4] Mohammed, S. S., Mediha, K., Qader, I. N., Dağdelen, F., "The developments of piezoelectric materials and shape memory alloys in robotic actuator systems", Avrupa Bilim ve Teknoloji Dergisi, (17): 1014-1030, (2019).
  • [5] Hartl, D. J., Lagoudas, D. C., "Aerospace applications of shape memory alloys", Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 221(4): 535-552, (2007).
  • [6] Song, G., Ma, N., Li, H. N., "Applications of shape memory alloys in civil structures", Engineering structures, 28(9): 1266-1274, (2006).
  • [7] Jani, J. M., Leary, M., Subic, A., editors. "Shape memory alloys in automotive applications. Applied Mechanics and Materials", Trans Tech Publications, (2014).
  • [8] Barbarino, S., Flores, E. S., Ajaj, R. M., Dayyani, I., Friswell, M. I., "A review on shape memory alloys with applications to morphing aircraft", Smart Materials and Structures, 23(6): 063001, (2014).
  • [9] Dutta, R., Madangopal, K., Gadiyar, H., Banerjee, S., "Biocompatibility of Ni–Ti shape memory alloy", British Corrosion Journal, 28(3): 217-221, (1993).
  • [10] Es-Souni, M., Es-Souni, M., Fischer-Brandies, H., "Assessing the biocompatibility of NiTi shape memory alloys used for medical applications", Analytical and bioanalytical chemistry, 381(3): 557-567, (2005).
  • [11] Aslan, N., Ceylan, B., Koç, M. M., Findik, F., "Metallic nanoparticles as X-Ray computed tomography (CT) contrast agents: A review", Journal of Molecular Structure, 1219: 128599, (2020).
  • [12] Koç, M. M., Aslan, N., Kao, A. P., Barber,, A. H., "Evaluation of X-ray tomography contrast agents: A review of production, protocols, and biological applications", Microscopy Research and Technique, 82(6): 812-848, (2019).
  • [13] Dagdelen, F., Balci, E., Qader, I. N., Ozen, E., Kok, M., Kanca, M. S., Abdullah, S. S., Mohammed, S. S., "Influence of the Nb Content on the Microstructure and Phase Transformation Properties of NiTiNb Shape Memory Alloys", JOM, 72(4): 1664-1672, (2020).
  • [14] Ilhan, M., Koç, M. M., Coşkun, B., Erkovan, M., Yakuphanoğlu, F., "Cd dopant effect on structural and optoelectronic properties of TiO 2 solar detectors", Journal of Materials Science: Materials in Electronics, 32(2): 2346-2365, (2021).
  • [15] Kara, F., Kurban, M., Coşkun, B., "Evaluation of electronic transport and optical response of two-dimensional Fe-doped TiO2 thin films for photodetector applications", Optik, 210: 164605, (2020).
  • [16] Davis, J. R. Handbook of materials for medical devices. 1st ed., (2003).
  • [17] Mohammed, S., Kök, M., Çirak, Z., Qader, I., Dağdelen, F., Zardawi, H., "The relationship between cobalt amount and oxidation parameters in NiTiCo shape memory alloys", Physics of Metals and Metallography, 121(14): 1411-1417, (2020).
  • [18] Qader, I. N., Öner, E., Kok, M., Mohammed, S. S., Dağdelen, F., Kanca, M. S., Aydoğdu Y., "Mechanical and Thermal Behavior of Cu 84− x Al 13 Ni 3 Hf x Shape Memory Alloys", Iranian Journal of Science and Technology, Transactions A: Science, 45(1): 343-349, (2021).
  • [19] Mohammed, S. S., Kok, M., Qader, I. N., Kanca, M. S., Ercan, E., Dağdelen, F., Aydoğdu, Y., "Influence of Ta Additive into Cu84−xAl13Ni3 (wt%) Shape Memory Alloy Produced by Induction Melting", Iranian Journal of Science and Technology, Transactions A: Science, 44(4): 1167-1175, (2020).
  • [20] Kim, H. Y., Sasaki, T., Okutsu, K., Kim, J. I., Inamura, T., Hosoda, H., Miyazaki, S., "Texture and shape memory behavior of Ti–22Nb–6Ta alloy", Acta materialia, 54(2): 423-433, (2006).
  • [21] Huang, H.H., Chiu, Y.H., Lee, T.H., Wu, S.C., Yang, H.W., Su, K.H., Hsu, C.C., "Ion release from NiTi orthodontic wires in artificial saliva with various acidities", Biomaterials, 24(20): 3585-3592, (2003).
  • [22] Ramarolahy, A., Castany, P., Gloriant, T., Prima, F., Laheurte, P., Eberhard,t A., Patoor, E., editors. "Synthesis and characterisation of new superelastic and low elastic modulus Ti-Nb-X alloys for biomedical application", Advanced Materials Research, Trans Tech Publications, 409, 170-174, (2011).
  • [23] Al-Zain, Y., Kim, H., Hosoda, H., Nam, T., Miyazaki, S., "Shape memory properties of Ti–Nb–Mo biomedical alloys", Acta Materialia, 58(12): 4212-4223, (2010).
  • [24] Ping, D., Cui, C., Yin, F., Yamabe-Mitarai, Y., "TEM investigations on martensite in a Ti–Nb-based shape memory alloy", Scripta Materialia, 54(7): 1305-1310, (2006).
  • [25] Fukui, Y., Inamura, T., Hosoda, H., Wakashima, K., Miyazaki, S., "Mechanical properties of a Ti-Nb-Al shape memory alloy", Materials Transactions, 45(4): 1077-1082, (2004).
  • [26] Zhang, J., Sun, F., Hao, Y., Gozdecki, N., Lebrun, E., Vermaut, P., Portier, R., Gloriant, T., Laheurte, P., Prima, F., "Influence of equiatomic Zr/Nb substitution on superelastic behavior of Ti–Nb–Zr alloy", Materials Science and Engineering: A, 563: 78-85, (2013).
  • [27] Hussein, A. H., Gepreel, M. A.-H., Gouda, M. K., Hefnawy, A. M., Kandil, S. H., "Biocompatibility of new Ti–Nb–Ta base alloys", Materials Science and Engineering: C, 61: 574-578, (2016).
  • [28] Meng, Q.-K., Huo, Y.-F., Ma, W., Sui, Y.-W., Zhang, J.Y., Guo, S., Zhao, X.Q., "Design and fabrication of a low modulus β-type Ti–Nb–Zr alloy by controlling martensitic transformation", Rare Metals, 37(9): 789-794, (2018).
  • [29] Wang, B., Zheng, Y., Zhao, L., "Effects of Sn content on the microstructure, phase constitution and shape memory effect of Ti–Nb–Sn alloys", Materials Science and Engineering: A, 486(1-2): 146-151, (2008).
  • [30] Kim, H., Hashimoto, S., Kim, J., Inamura, T., Hosoda, H., Miyazaki, S., "Effect of Ta addition on shape memory behavior of Ti–22Nb alloy", Materials Science and Engineering: A, 417(1-2): 120-128, (2006).
  • [31] Hao, Y., Li, S., Sun, S., Zheng, C., Yang, R., "Elastic deformation behaviour of Ti–24Nb–4Zr–7.9 Sn for biomedical applications", Acta biomaterialia, 3(2): 277-286, (2007).
  • [32] Tatar, C., Haji, A. I., Qader, I. N., "Heat Treatment Effects on Microstructural and Thermal Properties of High Cu Content NiTiCu Shape Memory Alloy", Iranian Journal of Science and Technology, Transactions A: Science, (2021).
  • [33] Qader, I. N., Kok, M., Cirak, Z. D., "The effects of substituting Sn for Ni on the thermal and some other characteristics of NiTiSn shape memory alloys", Journal of Thermal Analysis and Calorimetry, 145(2): 279-288, (2021).
  • [34] Tatar, C., Acar, R., Qader, I. N., "Investigation of thermodynamic and microstructural characteristics of NiTiCu shape memory alloys produced by arc-melting method", The European Physical Journal Plus, 135(3): 311, (2020).
  • [35] Kök, M., Aydoğdu, K., Kanca, M. S., Qader, I. N., Öner, E., Coşkun, M., "Effects of Aging on Magnetic and Thermal Characteristics of NiMnCoSn Magnetic Shape Memory Alloys", Iranian Journal of Science and Technology, Transactions A: Science, (2021).
  • [36] Balci, E., Dagdelen, F., Qader, I. N., Kok M., "Effects of substituting Nb with V on thermal analysis and biocompatibility assessment of quaternary NiTiNbV SMA", The European Physical Journal Plus, 136(2): 145, (2021).
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Physics
Yazarlar

Safar Mohammed 0000-0002-2794-8024

Fethi Dağdelen 0000-0001-9849-590X

Ibrahim Nazem Qader 0000-0003-1167-3799

Yayımlanma Tarihi 1 Eylül 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 35 Sayı: 3

Kaynak Göster

APA Mohammed, S., Dağdelen, F., & Qader, I. N. (2022). Effect of Ta Content on Microstructure and Phase Transformation Temperatures of Ti75.5-Nb25.5 (%at.) Alloy. Gazi University Journal of Science, 35(3), 1129-1138. https://doi.org/10.35378/gujs.947678
AMA Mohammed S, Dağdelen F, Qader IN. Effect of Ta Content on Microstructure and Phase Transformation Temperatures of Ti75.5-Nb25.5 (%at.) Alloy. Gazi University Journal of Science. Eylül 2022;35(3):1129-1138. doi:10.35378/gujs.947678
Chicago Mohammed, Safar, Fethi Dağdelen, ve Ibrahim Nazem Qader. “Effect of Ta Content on Microstructure and Phase Transformation Temperatures of Ti75.5-Nb25.5 (%at.) Alloy”. Gazi University Journal of Science 35, sy. 3 (Eylül 2022): 1129-38. https://doi.org/10.35378/gujs.947678.
EndNote Mohammed S, Dağdelen F, Qader IN (01 Eylül 2022) Effect of Ta Content on Microstructure and Phase Transformation Temperatures of Ti75.5-Nb25.5 (%at.) Alloy. Gazi University Journal of Science 35 3 1129–1138.
IEEE S. Mohammed, F. Dağdelen, ve I. N. Qader, “Effect of Ta Content on Microstructure and Phase Transformation Temperatures of Ti75.5-Nb25.5 (%at.) Alloy”, Gazi University Journal of Science, c. 35, sy. 3, ss. 1129–1138, 2022, doi: 10.35378/gujs.947678.
ISNAD Mohammed, Safar vd. “Effect of Ta Content on Microstructure and Phase Transformation Temperatures of Ti75.5-Nb25.5 (%at.) Alloy”. Gazi University Journal of Science 35/3 (Eylül 2022), 1129-1138. https://doi.org/10.35378/gujs.947678.
JAMA Mohammed S, Dağdelen F, Qader IN. Effect of Ta Content on Microstructure and Phase Transformation Temperatures of Ti75.5-Nb25.5 (%at.) Alloy. Gazi University Journal of Science. 2022;35:1129–1138.
MLA Mohammed, Safar vd. “Effect of Ta Content on Microstructure and Phase Transformation Temperatures of Ti75.5-Nb25.5 (%at.) Alloy”. Gazi University Journal of Science, c. 35, sy. 3, 2022, ss. 1129-38, doi:10.35378/gujs.947678.
Vancouver Mohammed S, Dağdelen F, Qader IN. Effect of Ta Content on Microstructure and Phase Transformation Temperatures of Ti75.5-Nb25.5 (%at.) Alloy. Gazi University Journal of Science. 2022;35(3):1129-38.