BibTex RIS Cite

EExact Solutions for Forced Vibration of Non-Uniform Rods by Laplace Transformation

Year 2011, Volume: 24 Issue: 2, 347 - 353, 05.04.2011

Abstract

Longitudinal forced vibration behavior of non-uniform rods subjected to dynamic axial load is studied. Exact displacement solutions are obtained using the Laplace transformation method. Free vibration behavior is readily obtained in the analysis. Natural frequencies available in the literature for the cases considered are fully recovered. Inverse transformation into the time domain is performed using calculus of residues. Closed-form displacement expressions are tractable and efficiently implemented. Their efficiency is demonstrated by comparing the results with those obtained using Mode Superposition Method.

Key Words: Longitudinal vibrations; Forced vibrations;

Natural  frequency; Non-uniform rod; Laplace    transformation;

Residue theorem.

 

 

 

References

  • Kumar, B.M., Sujith, R.I., “Exact solutions for the longitudinal vibration of non-uniform rods”, J. Sound. Vib., 207: 721-729 (1997).
  • Eisenberger, M., “Exact longitudinal vibration frequencies of a variable cross-section rod”, Appl. Acoust., 34: 123-130 (1991).
  • Abrate, S., “Vibration of non-uniform rods and beams”, J. Sound. Vib., 185: 703-716(1995).
  • Li, Q.S., Wu, J.R., Xu, J., “Longitudinal vibration of multi-step non-uniform structures with lumped masses and spring supports”, Appl. Acoust., 63: 333-350 (2002).
  • Li, Q.S., “Exact solutions for free longitudinal vibrations of non-uniform rods”, J. Sound. Vib., 234: 1-19(2000).
  • Qiusheng, L., Hong, C., Guiqing, L., “Static and dynamic analysis of straight bars with variable cross-section”, Comput. Struct., 59: 1185-1191 (1996).
  • Raj, A., Sujith, R.I., “Closed-form solutions for the free longitudinal vibration of inhomogeneous rods”, J. Sound. Vib., 283: 1015-1030 (2005).
  • Nachum, S., Altus, E., “Natural frequencies and mode shapes of deterministic and stochastic non- homogeneous rods and beams”, J. Sound. Vib., 302: 903-924 (2007).
  • Horgan, C.O., Chan, A.M., “Vibration of inhomogeneous strings, rods and membranes”, J. Sound. Vib., 225: 503-513 (1999).
  • Manolis, G.D., Beskos, D.E., “Dynamic stress concentration studies by boundary integrals and Laplace transform”, Int. J. Numer. Meth. Eng., 17: 573-599(1981).
  • Clough, R.W., Penzien, J., “Dynamics of Structures”, McGraw-Hill, New York, (1993).
Year 2011, Volume: 24 Issue: 2, 347 - 353, 05.04.2011

Abstract

References

  • Kumar, B.M., Sujith, R.I., “Exact solutions for the longitudinal vibration of non-uniform rods”, J. Sound. Vib., 207: 721-729 (1997).
  • Eisenberger, M., “Exact longitudinal vibration frequencies of a variable cross-section rod”, Appl. Acoust., 34: 123-130 (1991).
  • Abrate, S., “Vibration of non-uniform rods and beams”, J. Sound. Vib., 185: 703-716(1995).
  • Li, Q.S., Wu, J.R., Xu, J., “Longitudinal vibration of multi-step non-uniform structures with lumped masses and spring supports”, Appl. Acoust., 63: 333-350 (2002).
  • Li, Q.S., “Exact solutions for free longitudinal vibrations of non-uniform rods”, J. Sound. Vib., 234: 1-19(2000).
  • Qiusheng, L., Hong, C., Guiqing, L., “Static and dynamic analysis of straight bars with variable cross-section”, Comput. Struct., 59: 1185-1191 (1996).
  • Raj, A., Sujith, R.I., “Closed-form solutions for the free longitudinal vibration of inhomogeneous rods”, J. Sound. Vib., 283: 1015-1030 (2005).
  • Nachum, S., Altus, E., “Natural frequencies and mode shapes of deterministic and stochastic non- homogeneous rods and beams”, J. Sound. Vib., 302: 903-924 (2007).
  • Horgan, C.O., Chan, A.M., “Vibration of inhomogeneous strings, rods and membranes”, J. Sound. Vib., 225: 503-513 (1999).
  • Manolis, G.D., Beskos, D.E., “Dynamic stress concentration studies by boundary integrals and Laplace transform”, Int. J. Numer. Meth. Eng., 17: 573-599(1981).
  • Clough, R.W., Penzien, J., “Dynamics of Structures”, McGraw-Hill, New York, (1993).
There are 11 citations in total.

Details

Primary Language English
Journal Section Mechanical Engineering
Authors

Kerimcan Celebı This is me

İbrahim Keles This is me

Naki Tutuncu

Publication Date April 5, 2011
Published in Issue Year 2011 Volume: 24 Issue: 2

Cite

APA Celebı, K., Keles, İ., & Tutuncu, N. (2011). EExact Solutions for Forced Vibration of Non-Uniform Rods by Laplace Transformation. Gazi University Journal of Science, 24(2), 347-353.
AMA Celebı K, Keles İ, Tutuncu N. EExact Solutions for Forced Vibration of Non-Uniform Rods by Laplace Transformation. Gazi University Journal of Science. April 2011;24(2):347-353.
Chicago Celebı, Kerimcan, İbrahim Keles, and Naki Tutuncu. “EExact Solutions for Forced Vibration of Non-Uniform Rods by Laplace Transformation”. Gazi University Journal of Science 24, no. 2 (April 2011): 347-53.
EndNote Celebı K, Keles İ, Tutuncu N (April 1, 2011) EExact Solutions for Forced Vibration of Non-Uniform Rods by Laplace Transformation. Gazi University Journal of Science 24 2 347–353.
IEEE K. Celebı, İ. Keles, and N. Tutuncu, “EExact Solutions for Forced Vibration of Non-Uniform Rods by Laplace Transformation”, Gazi University Journal of Science, vol. 24, no. 2, pp. 347–353, 2011.
ISNAD Celebı, Kerimcan et al. “EExact Solutions for Forced Vibration of Non-Uniform Rods by Laplace Transformation”. Gazi University Journal of Science 24/2 (April 2011), 347-353.
JAMA Celebı K, Keles İ, Tutuncu N. EExact Solutions for Forced Vibration of Non-Uniform Rods by Laplace Transformation. Gazi University Journal of Science. 2011;24:347–353.
MLA Celebı, Kerimcan et al. “EExact Solutions for Forced Vibration of Non-Uniform Rods by Laplace Transformation”. Gazi University Journal of Science, vol. 24, no. 2, 2011, pp. 347-53.
Vancouver Celebı K, Keles İ, Tutuncu N. EExact Solutions for Forced Vibration of Non-Uniform Rods by Laplace Transformation. Gazi University Journal of Science. 2011;24(2):347-53.