Let G be a simple connected graph and its Laplacian eigenvalues be µ1≥ µ2≥…≥ µn-1≥ µn=0. In this paper, we present an upper bound for the algebraic connectivity µn-1 of G and a lower bound for the largest eigenvalue µ1 of G in terms of the degree sequence d1,d2,…,dn of G and the number Ni∩Nj of common vertices of i and j (1≤i<j≤n) and hence we improve bounds of Maden and Büyükköse [14].
Laplacian eigenvalues upper bounds lower bounds eigenvalue inequalities.
Birincil Dil | İngilizce |
---|---|
Konular | Mühendislik |
Bölüm | Mathematics |
Yazarlar | |
Yayımlanma Tarihi | 23 Şubat 2015 |
Yayımlandığı Sayı | Yıl 2015 Cilt: 28 Sayı: 1 |