Research Article
BibTex RIS Cite
Year 2024, Volume: 37 Issue: 4, 1918 - 1926
https://doi.org/10.35378/gujs.1391889

Abstract

References

  • [1] Szasz, O., “Generalization of S. Bernstein’s polynomials to the infinite interval”, Jornal of Research of the National Bueau Standards, 45(3): 239–245, (1950).
  • [2] Baskakov, V. A., “An instance of a sequence of linear positive operators in the space of continuous functions”, Doklady Akademii Nauk SSSR, 113(2): 249-251, (1957).
  • [3] Prasad, G., Agrawal, P.N., and Kasana, H.S., “Approximation of functions on [0,∞) by a new sequence of modified Szász operators”, Mathematical Forum, 6(2): 1–11, (1983).
  • [4] Jakimovski, A. and Leviatan, D., “Generalized Szász operators for the approximation in the infinite interval”, Mathematica (Cluj), 11(34): 97–103, (1969).
  • [5] Ismail, MEH., “On a generalization of Szász operators”, Mathematica (Cluj), 39(2): 259–267, (1974).
  • [6] Jeelani, M.B., and Alnahdi, A.S., “Approximation by Operators for the Sheffer–Appell Polynomials”, Symmetry, 14(12): 2672, (2022).
  • [7] Cai, QB., Cekim, B., and Icoz, G., “Gamma generalization operators involving analytic functions”, Mathematics, 9(13): 1547, (2021).
  • [8] Gupta, P., Acu, A.M., and Agrawal, P.N., “Jakimovski– Leviatan operators of Kantorovich type involving multiple Appell polynomials”, Georgian Mathematical Journal, 28(1): 73–82, (2021).
  • [9] Srivastava, H.M., Icoz, G., and Cekim, B., “Approximation properties of an extended family of the Szász–Mirakjan Beta-type operators”, Axioms, 8(4): 111, (2019).
  • [10] Kazmin, Y.A., “On Appell polynomials”, Matematicheskie Zametki, (6): 161-172, (1969). English translation in Math Notes, (5): 556-562, (1969).
  • [11] Varma, S. and Sucu, S., “A generalization of Szász operators by using the Appell polynomials of class A (2)”, Symmetry, 14(7): 1410, (2022).
  • [12] Sofyalıoglu, M. and Kanat, K., “Approximation by Szász-Baskakov operators based on Boas-Buck-type polynomials”, Filomat, 36(11): 3655–3673, (2022).
  • [13] Altomare, F., and Campiti, M., “Korovkin-type approximation theory and its applications”, Korovkin-type Approximation Theory and Its Applications, De Gruyter, (2011).
  • [14] Gavrea, I. and Rasa, I., “Remarks on some quantitative Korovkin-type results”, Revue d’analyse numérique et de théorie de l’approximation, 22(2): 173–176, (1993).
  • [15] Zhuk, V., “Functions of the Lip 1 class and SN Bernstein’s polynomials”, Vestnik Leningradskogo Universiteta Matematika Mekhanika Astronomiya, 1: 25– 30, (1989).
  • [16] Fink, A.M., “Kolmogorov-Landau inequalities for monotone functions”, Journal of Mathematical Analysis and Application, 90(1): 251–258, (1982).

A Generalization of Szász-Baskakov Operators by using the Appell Polynomials of Class A^(2)

Year 2024, Volume: 37 Issue: 4, 1918 - 1926
https://doi.org/10.35378/gujs.1391889

Abstract

In this paper, we obtain a generalization of the Szász-Baskakov operators with the help of A^((2)) class Appell polynomials. For every compact subset of [0,∞), the uniform convergence of these operators is provided. We also mention the convergence rate of our new operators and then we find some approximation results. The rate of convergence is obtained with the help of the Steklov function.

References

  • [1] Szasz, O., “Generalization of S. Bernstein’s polynomials to the infinite interval”, Jornal of Research of the National Bueau Standards, 45(3): 239–245, (1950).
  • [2] Baskakov, V. A., “An instance of a sequence of linear positive operators in the space of continuous functions”, Doklady Akademii Nauk SSSR, 113(2): 249-251, (1957).
  • [3] Prasad, G., Agrawal, P.N., and Kasana, H.S., “Approximation of functions on [0,∞) by a new sequence of modified Szász operators”, Mathematical Forum, 6(2): 1–11, (1983).
  • [4] Jakimovski, A. and Leviatan, D., “Generalized Szász operators for the approximation in the infinite interval”, Mathematica (Cluj), 11(34): 97–103, (1969).
  • [5] Ismail, MEH., “On a generalization of Szász operators”, Mathematica (Cluj), 39(2): 259–267, (1974).
  • [6] Jeelani, M.B., and Alnahdi, A.S., “Approximation by Operators for the Sheffer–Appell Polynomials”, Symmetry, 14(12): 2672, (2022).
  • [7] Cai, QB., Cekim, B., and Icoz, G., “Gamma generalization operators involving analytic functions”, Mathematics, 9(13): 1547, (2021).
  • [8] Gupta, P., Acu, A.M., and Agrawal, P.N., “Jakimovski– Leviatan operators of Kantorovich type involving multiple Appell polynomials”, Georgian Mathematical Journal, 28(1): 73–82, (2021).
  • [9] Srivastava, H.M., Icoz, G., and Cekim, B., “Approximation properties of an extended family of the Szász–Mirakjan Beta-type operators”, Axioms, 8(4): 111, (2019).
  • [10] Kazmin, Y.A., “On Appell polynomials”, Matematicheskie Zametki, (6): 161-172, (1969). English translation in Math Notes, (5): 556-562, (1969).
  • [11] Varma, S. and Sucu, S., “A generalization of Szász operators by using the Appell polynomials of class A (2)”, Symmetry, 14(7): 1410, (2022).
  • [12] Sofyalıoglu, M. and Kanat, K., “Approximation by Szász-Baskakov operators based on Boas-Buck-type polynomials”, Filomat, 36(11): 3655–3673, (2022).
  • [13] Altomare, F., and Campiti, M., “Korovkin-type approximation theory and its applications”, Korovkin-type Approximation Theory and Its Applications, De Gruyter, (2011).
  • [14] Gavrea, I. and Rasa, I., “Remarks on some quantitative Korovkin-type results”, Revue d’analyse numérique et de théorie de l’approximation, 22(2): 173–176, (1993).
  • [15] Zhuk, V., “Functions of the Lip 1 class and SN Bernstein’s polynomials”, Vestnik Leningradskogo Universiteta Matematika Mekhanika Astronomiya, 1: 25– 30, (1989).
  • [16] Fink, A.M., “Kolmogorov-Landau inequalities for monotone functions”, Journal of Mathematical Analysis and Application, 90(1): 251–258, (1982).
There are 16 citations in total.

Details

Primary Language English
Subjects Approximation Theory and Asymptotic Methods
Journal Section Mathematics
Authors

Kadir Kanat 0000-0002-7738-903X

Melek Sofyalıoğlu 0000-0001-7837-2785

Verda Karadaş 0009-0005-5348-180X

Early Pub Date April 19, 2024
Publication Date
Submission Date November 16, 2023
Acceptance Date March 18, 2024
Published in Issue Year 2024 Volume: 37 Issue: 4

Cite

APA Kanat, K., Sofyalıoğlu, M., & Karadaş, V. (n.d.). A Generalization of Szász-Baskakov Operators by using the Appell Polynomials of Class A^(2). Gazi University Journal of Science, 37(4), 1918-1926. https://doi.org/10.35378/gujs.1391889
AMA Kanat K, Sofyalıoğlu M, Karadaş V. A Generalization of Szász-Baskakov Operators by using the Appell Polynomials of Class A^(2). Gazi University Journal of Science. 37(4):1918-1926. doi:10.35378/gujs.1391889
Chicago Kanat, Kadir, Melek Sofyalıoğlu, and Verda Karadaş. “A Generalization of Szász-Baskakov Operators by Using the Appell Polynomials of Class A^(2)”. Gazi University Journal of Science 37, no. 4 n.d.: 1918-26. https://doi.org/10.35378/gujs.1391889.
EndNote Kanat K, Sofyalıoğlu M, Karadaş V A Generalization of Szász-Baskakov Operators by using the Appell Polynomials of Class A^(2). Gazi University Journal of Science 37 4 1918–1926.
IEEE K. Kanat, M. Sofyalıoğlu, and V. Karadaş, “A Generalization of Szász-Baskakov Operators by using the Appell Polynomials of Class A^(2)”, Gazi University Journal of Science, vol. 37, no. 4, pp. 1918–1926, doi: 10.35378/gujs.1391889.
ISNAD Kanat, Kadir et al. “A Generalization of Szász-Baskakov Operators by Using the Appell Polynomials of Class A^(2)”. Gazi University Journal of Science 37/4 (n.d.), 1918-1926. https://doi.org/10.35378/gujs.1391889.
JAMA Kanat K, Sofyalıoğlu M, Karadaş V. A Generalization of Szász-Baskakov Operators by using the Appell Polynomials of Class A^(2). Gazi University Journal of Science.;37:1918–1926.
MLA Kanat, Kadir et al. “A Generalization of Szász-Baskakov Operators by Using the Appell Polynomials of Class A^(2)”. Gazi University Journal of Science, vol. 37, no. 4, pp. 1918-26, doi:10.35378/gujs.1391889.
Vancouver Kanat K, Sofyalıoğlu M, Karadaş V. A Generalization of Szász-Baskakov Operators by using the Appell Polynomials of Class A^(2). Gazi University Journal of Science. 37(4):1918-26.