Yıl 2021,
Cilt: 8 Sayı: 2, 308 - 317, 28.06.2021
Mustafa Özdemir
,
Kazım Ercan
,
Burak Büyüker
,
Hamza Kemal Akyıldız
Kaynakça
- Aouici, H., Yallese, M. A., Chaoui, K., Mabrouki, T., & Rigal, J. F. (2012). Analysis of surface roughness and cutting force components in hard turning with CBN tool: Prediction model and cutting conditions optimization. Measurement, 45(3), 344-353. doi:10.1016/j.measurement.2011.11.011
- Asiltürk İ., & Neşeli S. (2012). Multi response optimisation of CNC turning parameters via Taguchi method-based response surface analysis. Measurement, 45(4), 785-794. doi:10.1016/j.measurement.2011.12.004
- Beauchamp, Y., Thomas, M., Youssef, Y. A., & Masounave, J. (1996). Investigation of cutting parameter effects on surface roughness in lathe boring operation by use of a full factorial design. Computers & Industrial Engineering, 31(3-4), 645-651. doi:10.1016/S0360-8352(96)00234-3
- Bouacha, K., Yallese, M. A., Mabrouki, T., & Rigal, J. F. (2010). Statistical analysis of surface roughness and cutting forces using response surface methodology in hard turning of AISI 52100 bearing steel with CBN tool. International Journal of Refractory Metals and Hard Materials, 28(3), 349-361. doi:10.1016/j.ijrmhm.2009.11.011
- Chou, Y. K., & Song, H. (2004). Tool nose radius effects on finish hard turning. Journal of Materials Processing Technology, 148(2), 259-268. doi:10.1016/j.jmatprotec.2003.10.029
- Çakır, M. C. (2000). Modern talaşlı imalat yöntemleri. Uludağ University Publications, Bursa.
- Dureja, J. S., Singh, R., & Bhatti, M. S. (2014). Optimizing flank wear and surface roughness during hard turning of AISI D3 steel by Taguchi and RSM methods. Production & Manufacturing Research, 2(1), 767-783. doi:10.1080/21693277.2014.955216
- Gupta, U., & Kohli, A. (2014). Experimental investigation of surface roughness in dry turning of AISI 4340 alloy steel using PVD-and CVD-coated carbide inserts. International Journal of Innovations in Engineering and Technology, 4(1), 94-103.
- Günay, M. (2013). AISI 316L Çeliğinin işlenmesinde takım radyüsü ve kesme parametrelerinin Taguchi yöntemiyle optimizasyonu. Gazi University Journal of Engineering and Architecture, 28(3), 437-444.
- Gürbüz, H., Şeker, U., & Kafkas, F. (2017). Investigation of effects of cutting insert rake face forms on surface integrity. The International Journal of Advanced Manufacturing Technology, 90(9-12), 3507-3522. doi:10.1007/s00170-016-9652-7
- İynen, O., Şahinoğlu, A., Özdemir, M., & Yılmaz, V. (2020a). Investigation of the effect of cutting parameters on the surface roughness value in the machining of AISI 4140 steel with Taquchi method. Journal of The Institute of Science and Technology, 10(4), 840-2849. doi:10.21597/jist.736802
- İynen, O., Şahinoğlu, A., Özdemir, M., & Yılmaz, V. (2020b). Optimization of the effect of cutting parameters on the cutting force in the gradual turning process by Taguchi method. Journal of The Institute of Science and Technology, 10(3), 1909-1918. doi:10.21597/jist.697433
- Kirby, E. D., Zhang, Z., Chen, J. C., & Chen, J. (2006). Optimizing surface finish in a turning operation using the Taguchi parameter design method. The International Journal of Advanced Manufacturing Technology, 30(11), 1021-1029. doi:10.1007/s00170-005-0156-0
- Kishawy, H. A., & Elbestawi, M. A. (1997). Effect of process parameters on chip morphology when machining hardened steel. Manufacturing Science and Technology, 6(2), 13-20.
- Koçak, H. (2020). Ç2842, MS58 ve Al 6013 Malzemelerin Elektolitik Ni Kaplanmasında Kaplama Kalınlığı ve Yüzeysel Özelliklerin İncelenmesi. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 35(4), 1001-1008. doi:10.21605/cukurovaummfd.869166
- Korkut, I., Boy, M., Karacan, I., & Seker, U. (2007). Investigation of chip-back temperature during machining depending on cutting parameter. Materials and Design, 28, 2329-2335. doi:10.1016/j.matdes.2006.07.009
- Kundrak, J., Karpuschewski, B., Gyani, K., & Bana, V. (2008). Accuracy of hard turning. Journal of Materials Processing Technology, 202(1-3), 328-338. doi:10.1016/j.jmatprotec.2007.09.056
- Kwon, W. T., & Choi, D. (2002). Radial immersion angle estimation using cutting force and pre-determined cutting force ration in face milling. International Journal of Machine Tool and Manufacture, 42, 1649-1655. doi:10.1016/S0890-6955(02)00119-0
- Mia, M., Khan, M. A., & Dhar, N. R. (2017). Study of surface roughness and cutting forces using ANN, RSM, and ANOVA in turning of Ti-6Al-4V under cryogenic jets applied at flank and rake faces of coated WC tool. The International Journal of Advanced Manufacturing Technology, 93(1), 975-991. doi:10.1007/s00170-017-0566-9
- Motorcu, A. R. (2010). The optimization of machining parameters using the Taguchi method for surface roughness of AISI 8660 hardened alloy steel. Journal of Mechanical Engineering, 56(6), 391-401.
- Nalbant, M., Gökkaya, H. & Sur, G. (2007). Application of Taguchi method in the optimization of cutting parameters for surface roughness in turning. Materials & Design, 28(4), 1379-1385. doi:10.1016/j.matdes.2006.01.008
- Puertas, A. I., & Luis-Pérez, C. J. (2003). Surface rougness prediction by factorial design of experiments in turning processes. Journal of Materials Processing Technology, 143, 390-396. doi:10.1016/S0924-0136(03)00407-2
- Rashid, W. B., Goel, S., Davim, J. P., & Joshi, S. N. (2016). Parametric design optimization of hard turning of AISI 4340 steel (69 HRC). The International Journal of Advanced Manufacturing Technology, 82(1-4), 451-462. doi:10.1007/s00170-015-7337-2
- Saini, A., Dhiman, S., Sharma, R., & Setia, S. (2014). Experimental estimation and optimization of process parameters under minimum quantity lubrication and dry turning of AISI-4340 with different carbide inserts. Journal of Mechanical Science and Technology, 28(6), 2307-2318. doi:10.1007/s12206-014-0521-8
- Selvaraj, D. P., & Philip, P. R. (2021). Some studies on surface roughness of AISI 304 austenitic stainless steel in dry turning operation. Trends in Mechanical and Biomedical Design, 869-877. doi:10.1007/978-981-15-4488-0_73
- Şahinoğlu, A., & Rafighi, M. (2020a). Investigation of Vibration, Sound intensity, machine current and surface roughness values of AISI 4140 during machining on the lathe. Arabian Journal for Science and Engineering, 45, 765-778. doi:10.1007/s13369-019-04124-x
- Şahinoğlu, A., & Rafighi, M. (2020b). Optimization of cutting parameters with respect to roughness for machining of hardened AISI 1040 steel. Materials Testing, 62(1), 85-95. doi:10.3139/120.111458
- Thamizhmanii, S., Saparudin, S., & Hasan, S. (2007). Analyses of surface roughness by turning process using Taguchi method. Journal of Achievements in Materials and Manufacturing Engineering, 20(1-2), 503-506.
- Thamma, R. (2008). Comparison between multiple regression models to study effect of turning parameters on the surface roughness. In Proceedings of the 2008 IAJC-IJME International Conference, Paper 133, 1-12.
- Zerti, O., Yallese, M. A., Khettabi, R., Chaoui, K., & Mabrouki, T. (2017). Design optimization for minimum technological parameters when dry turning of AISI D3 steel using Taguchi method. The International Journal of Advanced Manufacturing Technology, 89(5-8), 1915-1934. doi:10.1007/s00170-016-9162-7
Analysis of the Effect of Tool Nose Radius, Feed Rate, and Cutting Depth Parameters on Surface Roughness and Cutting Force in CNC Lathe Machining of 36CrNiMo4 Alloy Steel
Yıl 2021,
Cilt: 8 Sayı: 2, 308 - 317, 28.06.2021
Mustafa Özdemir
,
Kazım Ercan
,
Burak Büyüker
,
Hamza Kemal Akyıldız
Öz
In this study, in turning 36CrNiMo4 steel, the effects of cutting parameters on surface roughness (Ra) value and main cutting force (Fc) were investigated. Tool nose radius (R), feed rate (f), and cutting depth (a) were used as machining parameters. The experiments were carried out at a constant cutting speed (V) of 150 m/min and under dry cutting conditions. Taguchi L9 orthogonal index was used in the design of the experiment, and the effect levels of processing parameters according to Signal to Noise (S/N) ratios and the relationship between them were analyzed using the analysis of variance (ANOVA) method for the analysis of the results. It was determined that the f was the most effective factor on the Ra value with 75.13% by contribution rate, and the best Ra value was obtained when 0.03 mm/rev f was used. It was determined that the most effective factor affecting the Fc was the a with a ratio of 62.39%, was determined that the Fc increased with the increase of the a, the smallest Fc was obtained when the a was 0.05 mm.
Kaynakça
- Aouici, H., Yallese, M. A., Chaoui, K., Mabrouki, T., & Rigal, J. F. (2012). Analysis of surface roughness and cutting force components in hard turning with CBN tool: Prediction model and cutting conditions optimization. Measurement, 45(3), 344-353. doi:10.1016/j.measurement.2011.11.011
- Asiltürk İ., & Neşeli S. (2012). Multi response optimisation of CNC turning parameters via Taguchi method-based response surface analysis. Measurement, 45(4), 785-794. doi:10.1016/j.measurement.2011.12.004
- Beauchamp, Y., Thomas, M., Youssef, Y. A., & Masounave, J. (1996). Investigation of cutting parameter effects on surface roughness in lathe boring operation by use of a full factorial design. Computers & Industrial Engineering, 31(3-4), 645-651. doi:10.1016/S0360-8352(96)00234-3
- Bouacha, K., Yallese, M. A., Mabrouki, T., & Rigal, J. F. (2010). Statistical analysis of surface roughness and cutting forces using response surface methodology in hard turning of AISI 52100 bearing steel with CBN tool. International Journal of Refractory Metals and Hard Materials, 28(3), 349-361. doi:10.1016/j.ijrmhm.2009.11.011
- Chou, Y. K., & Song, H. (2004). Tool nose radius effects on finish hard turning. Journal of Materials Processing Technology, 148(2), 259-268. doi:10.1016/j.jmatprotec.2003.10.029
- Çakır, M. C. (2000). Modern talaşlı imalat yöntemleri. Uludağ University Publications, Bursa.
- Dureja, J. S., Singh, R., & Bhatti, M. S. (2014). Optimizing flank wear and surface roughness during hard turning of AISI D3 steel by Taguchi and RSM methods. Production & Manufacturing Research, 2(1), 767-783. doi:10.1080/21693277.2014.955216
- Gupta, U., & Kohli, A. (2014). Experimental investigation of surface roughness in dry turning of AISI 4340 alloy steel using PVD-and CVD-coated carbide inserts. International Journal of Innovations in Engineering and Technology, 4(1), 94-103.
- Günay, M. (2013). AISI 316L Çeliğinin işlenmesinde takım radyüsü ve kesme parametrelerinin Taguchi yöntemiyle optimizasyonu. Gazi University Journal of Engineering and Architecture, 28(3), 437-444.
- Gürbüz, H., Şeker, U., & Kafkas, F. (2017). Investigation of effects of cutting insert rake face forms on surface integrity. The International Journal of Advanced Manufacturing Technology, 90(9-12), 3507-3522. doi:10.1007/s00170-016-9652-7
- İynen, O., Şahinoğlu, A., Özdemir, M., & Yılmaz, V. (2020a). Investigation of the effect of cutting parameters on the surface roughness value in the machining of AISI 4140 steel with Taquchi method. Journal of The Institute of Science and Technology, 10(4), 840-2849. doi:10.21597/jist.736802
- İynen, O., Şahinoğlu, A., Özdemir, M., & Yılmaz, V. (2020b). Optimization of the effect of cutting parameters on the cutting force in the gradual turning process by Taguchi method. Journal of The Institute of Science and Technology, 10(3), 1909-1918. doi:10.21597/jist.697433
- Kirby, E. D., Zhang, Z., Chen, J. C., & Chen, J. (2006). Optimizing surface finish in a turning operation using the Taguchi parameter design method. The International Journal of Advanced Manufacturing Technology, 30(11), 1021-1029. doi:10.1007/s00170-005-0156-0
- Kishawy, H. A., & Elbestawi, M. A. (1997). Effect of process parameters on chip morphology when machining hardened steel. Manufacturing Science and Technology, 6(2), 13-20.
- Koçak, H. (2020). Ç2842, MS58 ve Al 6013 Malzemelerin Elektolitik Ni Kaplanmasında Kaplama Kalınlığı ve Yüzeysel Özelliklerin İncelenmesi. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 35(4), 1001-1008. doi:10.21605/cukurovaummfd.869166
- Korkut, I., Boy, M., Karacan, I., & Seker, U. (2007). Investigation of chip-back temperature during machining depending on cutting parameter. Materials and Design, 28, 2329-2335. doi:10.1016/j.matdes.2006.07.009
- Kundrak, J., Karpuschewski, B., Gyani, K., & Bana, V. (2008). Accuracy of hard turning. Journal of Materials Processing Technology, 202(1-3), 328-338. doi:10.1016/j.jmatprotec.2007.09.056
- Kwon, W. T., & Choi, D. (2002). Radial immersion angle estimation using cutting force and pre-determined cutting force ration in face milling. International Journal of Machine Tool and Manufacture, 42, 1649-1655. doi:10.1016/S0890-6955(02)00119-0
- Mia, M., Khan, M. A., & Dhar, N. R. (2017). Study of surface roughness and cutting forces using ANN, RSM, and ANOVA in turning of Ti-6Al-4V under cryogenic jets applied at flank and rake faces of coated WC tool. The International Journal of Advanced Manufacturing Technology, 93(1), 975-991. doi:10.1007/s00170-017-0566-9
- Motorcu, A. R. (2010). The optimization of machining parameters using the Taguchi method for surface roughness of AISI 8660 hardened alloy steel. Journal of Mechanical Engineering, 56(6), 391-401.
- Nalbant, M., Gökkaya, H. & Sur, G. (2007). Application of Taguchi method in the optimization of cutting parameters for surface roughness in turning. Materials & Design, 28(4), 1379-1385. doi:10.1016/j.matdes.2006.01.008
- Puertas, A. I., & Luis-Pérez, C. J. (2003). Surface rougness prediction by factorial design of experiments in turning processes. Journal of Materials Processing Technology, 143, 390-396. doi:10.1016/S0924-0136(03)00407-2
- Rashid, W. B., Goel, S., Davim, J. P., & Joshi, S. N. (2016). Parametric design optimization of hard turning of AISI 4340 steel (69 HRC). The International Journal of Advanced Manufacturing Technology, 82(1-4), 451-462. doi:10.1007/s00170-015-7337-2
- Saini, A., Dhiman, S., Sharma, R., & Setia, S. (2014). Experimental estimation and optimization of process parameters under minimum quantity lubrication and dry turning of AISI-4340 with different carbide inserts. Journal of Mechanical Science and Technology, 28(6), 2307-2318. doi:10.1007/s12206-014-0521-8
- Selvaraj, D. P., & Philip, P. R. (2021). Some studies on surface roughness of AISI 304 austenitic stainless steel in dry turning operation. Trends in Mechanical and Biomedical Design, 869-877. doi:10.1007/978-981-15-4488-0_73
- Şahinoğlu, A., & Rafighi, M. (2020a). Investigation of Vibration, Sound intensity, machine current and surface roughness values of AISI 4140 during machining on the lathe. Arabian Journal for Science and Engineering, 45, 765-778. doi:10.1007/s13369-019-04124-x
- Şahinoğlu, A., & Rafighi, M. (2020b). Optimization of cutting parameters with respect to roughness for machining of hardened AISI 1040 steel. Materials Testing, 62(1), 85-95. doi:10.3139/120.111458
- Thamizhmanii, S., Saparudin, S., & Hasan, S. (2007). Analyses of surface roughness by turning process using Taguchi method. Journal of Achievements in Materials and Manufacturing Engineering, 20(1-2), 503-506.
- Thamma, R. (2008). Comparison between multiple regression models to study effect of turning parameters on the surface roughness. In Proceedings of the 2008 IAJC-IJME International Conference, Paper 133, 1-12.
- Zerti, O., Yallese, M. A., Khettabi, R., Chaoui, K., & Mabrouki, T. (2017). Design optimization for minimum technological parameters when dry turning of AISI D3 steel using Taguchi method. The International Journal of Advanced Manufacturing Technology, 89(5-8), 1915-1934. doi:10.1007/s00170-016-9162-7