Year 2023,
Volume: 10 Issue: 4, 442 - 451, 31.12.2023
Kenan Özel
,
Abdullah Atılgan
References
- Al-Ghamdi, A. A., Al-Hartomy, O. A., El Okr, M., Nawar, A. M., El-Gazzar, S., El-Tantawy, F., & Yakuphanoglu, F. (2014). Semiconducting properties of Al doped ZnO thin films. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 131, 512-517. https://www.doi.org/10.1016/j.saa.2014.04.020
- Chahmat, N., Souier, T., Mokri, A., Bououdina, M., Aida, M. S., & Ghers, M. (2014). Structure, microstructure and optical properties of Sn-doped ZnO thin films. Journal of alloys and compounds, 593, 148-153. https://www.doi.org/10.1016/j.jallcom.2014.01.024
- Chen, X. L., Xu, B. H., Xue, J. M., Zhao, Y., Wei, C. C., Sun, J., Wang, Y., Zhang, X. D., & Geng, X. H. (2007). Boron-doped zinc oxide thin films for large-area solar cells grown by metal organic chemical vapor deposition. Thin Solid Films, 515(7-8), 3753-3759. https://www.doi.org/10.1016/j.tsf.2006.09.039
- Chen, R., & Lan, L. (2019). Solution-processed metal-oxide thin-film transistors: A review of recent developments. Nanotechnology, 30(31), 312001. https://www.doi.org/10.1088/1361-6528/ab1860
- Choi, Y. J., Gong, S. C., Johnson, D. C., Golledge, S., Yeom, G. Y., & Park, H. H. (2013). Characteristics of the electromagnetic interference shielding effectiveness of Al-doped ZnO thin films deposited by atomic layer deposition. Applied Surface Science, 269, 92-97. https://www.doi.org/10.1016/j.apsusc.2012.09.159
- Dash, J. N., Das, R., & Jha, R. (2018). AZO coated microchannel incorporated PCF-based SPR sensor: a numerical analysis. IEEE Photonics Technology Letters, 30(11), 1032-1035. https://www.doi.org/10.1109/LPT.2018.2829920
- Farrag, A. A. G., & Balboul, M. R. (2017). Nano ZnO thin films synthesis by sol–gel spin coating method as a transparent layer for solar cell applications. Journal of Sol-Gel Science and Technology, 82, 269-279. https://www.doi.org/10.1007/s10971-016-4277-8
- Kara, I., Atilgan, A., Serin, T., & Yildiz, A. (2017). Effects of Co and Cu dopants on the structural, optical, and electrical properties of ZnO nanocrystals. Journal of Materials Science: Materials in Electronics, 28, 6088-6092. https://www.doi.org/10.1007/s10854-016-6285-4
- Kara, I., Yildiz, A., Yildiz, G., Dogan, B., Serin, N., & Serin, T. (2016). Al and X (Sn, Cu, In) co-doped ZnO nanocrystals. Journal of Materials Science: Materials in Electronics, 27, 6179-6182. https://www.doi.org/10.1007/s10854-016-4546-x
- Kaur, G., Mitra, A., & Yadav, K. L. (2015). Pulsed laser deposited Al-doped ZnO thin films for optical applications. Progress in Natural Science: Materials International, 25(1), 12-21. https://www.doi.org/10.1016/j.pnsc.2015.01.012
- Lee, P. C., Hsiao, Y. L., Dutta, J., Wang, R. C., Tseng, S. W., & Liu, C. P. (2021). Development of porous ZnO thin films for enhancing piezoelectric nanogenerators and force sensors. Nano Energy, 82, 105702. https://www.doi.org/10.1016/j.nanoen.2020.105702
- Liu, Y., & Zhu, S. (2019). Preparation and characterization of Mg, Al and Ga co-doped ZnO transparent conductive films deposited by magnetron sputtering. Results in Physics, 14, 102514. https://www.doi.org/10.1016/j.rinp.2019.102514
- Mahroug, A., Boudjadar, S., Hamrit, S., & Guerbous, L. (2014). Structural, optical and photocurrent properties of undoped and Al-doped ZnO thin films deposited by sol–gel spin coating technique. Materials Letters, 134, 248-251. https://www.doi.org/10.1016/j.matlet.2014.07.099
- Mártil, I., & Díaz, G. G. (1992). Undergraduate laboratory experiment: Measurement of the complex refractive index and the band gap of a thin film semiconductor. American Journal of Physics, 60(1), 83-86. https://www.doi.org/10.1119/1.17049
- Ozel, K., & Yildiz, A. (2021a). Comprehensive understanding of the role of emitter layer thickness for metal–oxide–semiconductors based solar cells. IEEE Journal of Photovoltaics, 12(1), 251-258. https://www.doi.org/10.1109/jphotov.2021.3119612
- Ozel, K., & Yildiz, A. (2021b). The potential barrier-dependent carrier transport mechanism in n-SnO2/p-Si heterojunctions. Sensors and Actuators A: Physical, 332, 113141. https://www.doi.org/10.1016/j.sna.2021.113141
- Ozel, K., & Yildiz, A. (2022). Estimation of maximum photoresponsivity of n‐SnO2/p‐Si heterojunction-based UV photodetectors. Physica Status Solidi (RRL) – Rapid Research Letters, 16(2), 2100490. https://www.doi.org/10.1002/pssr.202100490
- Serin, T., Atilgan, A., Kara, I., & Yildiz, A. (2017). Electron transport in Al-Cu co-doped ZnO thin films. Journal of Applied Physics, 121(9), 095303. https://www.doi.org/10.1063/1.4977470
- Serin, T., Yildiz, A., Uzun, Ş., Çam, E., & Serin, N. (2011). Electrical conduction properties of In-doped ZnO thin films. Physica Scripta, 84(6), 065703. https://www.doi.org/10.1088/0031-8949/84/06/065703
- Shukla, R. K., Srivastava, A., Srivastava, A., & Dubey, K. C. (2006). Growth of transparent conducting nanocrystalline Al doped ZnO thin films by pulsed laser deposition. Journal of crystal growth, 294(2), 427-431. https://www.doi.org/10.1016/j.jcrysgro.2006.06.035
- Soltabayev, B., Er, İ. K., Yildirim, M. A., Ates, A., & Acar, S. (2021). The Dependence of The Nickel Concentration of ZnO Thin Films for Gas Sensors Applications. Gazi University Journal of Science Part A: Engineering and Innovation, 8(1), 157-165.
- Steinhauser, J., Faÿ, S., Oliveira, N., Vallat‐Sauvain, E., Zimin, D., Kroll, U., & Ballif, C. (2008). Electrical transport in boron‐doped polycrystalline zinc oxide thin films. physica status solidi (a), 205(8), 1983-1987. https://www.doi.org/10.1002/pssa.200778878
- Tsay, C. Y., Fan, K. S., & Lei, C. M. (2012). Synthesis and characterization of sol–gel derived gallium-doped zinc oxide thin films. Journal of Alloys and Compounds, 512(1), 216-222. https://www.doi.org/10.1016/j.jallcom.2011.09.066
- Tsay, C. Y., & Hsu, W. T. (2013). Sol–gel derived undoped and boron-doped ZnO semiconductor thin films: preparation and characterization. Ceramics International, 39(7), 7425-7432. https://www.doi.org/10.1016/j.ceramint.2013.02.086
- Tsay, C. Y., Wu, C. W., Lei, C. M., Chen, F. S., & Lin, C. K. (2010). Microstructural and optical properties of Ga-doped ZnO semiconductor thin films prepared by sol–gel process. Thin Solid Films, 519(5), 1516-1520. https://www.doi.org/10.1016/j.tsf.2010.08.170
- Yildiz, A., Serin, T., Öztürk, E., & Serin, N. (2012). Barrier-controlled electron transport in Sn-doped ZnO polycrystalline thin films. Thin Solid Films, 522, 90-94. https://www.doi.org/10.1016/j.tsf.2012.09.006
- Yildiz, A., Uzun, S., Serin, N., & Serin, T. (2016). Influence of grain boundaries on the figure of merit of undoped and Al, In, Sn doped ZnO thin films for photovoltaic applications. Scripta Materialia, 113, 23-26. https://www.doi.org/10.1016/j.scriptamat.2015.10.004
- Yoshino, K., Fukushima, T., & Yoneta, M. (2005). Structural, optical and electrical characterization on ZnO film grown by a spray pyrolysis method. Journal of Materials Science: Materials in Electronics, 16, 403-408. https://www.doi.org/10.1007/s10854-005-2305-5
- Zhang, Y., Liu, C., Liu, J., Xiong, J., Liu, J., Zhang, K., Liu, Y., Peng, M., Yu, A., Zhang, A., Zhang, Y., Wang, Z., Zhai, J., & Wang, Z. L. (2016). Lattice strain induced remarkable enhancement in piezoelectric performance of ZnO-based flexible nanogenerators. ACS Applied Materials & Interfaces, 8(2), 1381-1387. https://www.doi.org/10.1021/acsami.5b10345
- Zhao, D., Sathasivam, S., Wang, M., & Carmalt, C. J. (2022). Transparent and conducting boron doped ZnO thin films grown by aerosol assisted chemical vapor deposition. RSC Advances, 12(51), 33049-33055. https://www.doi.org/10.1039/D2RA05895B
Systematic Investigation on the Synergistic Impact of Gallium (Ga)-Boron (B) Co-Doping on the Features of ZnO Films
Year 2023,
Volume: 10 Issue: 4, 442 - 451, 31.12.2023
Kenan Özel
,
Abdullah Atılgan
Abstract
Herein, gallium-boron co-doped ZnO (GBZO) thin films (TFs) of varying percentages of Ga and B doping content were coated on glass slides via spin-coating technique. The impact of doping content on the features of GBZO TFs was comprehensively probed in this work. The characterization results demonstrate that the doping content has a profound impact on the features of GBZO TFs. The X-ray diffraction results verify the polycrystalline nature of GBZO TFs with varying diffraction peak intensities. AFM images disclose the smooth coating of GBZO TFs with low surface roughness. UV–Vis-NIR transmittance spectra reveal that the deposited TFs exhibit high transparency over 86 % in range of 400-800 nm wavelength with excellent optical properties. The electrical resistance measurements indicate that GBZO TFs having doping concentrations of 2.5 at. % of Ga and 0.5 at. % of B has the lower resistivity, and the resistivity of the samples are strongly affected by the doping content. The obtained knowledge from this study could be useful for the fabrication of TF based optoelectronic devices.
References
- Al-Ghamdi, A. A., Al-Hartomy, O. A., El Okr, M., Nawar, A. M., El-Gazzar, S., El-Tantawy, F., & Yakuphanoglu, F. (2014). Semiconducting properties of Al doped ZnO thin films. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 131, 512-517. https://www.doi.org/10.1016/j.saa.2014.04.020
- Chahmat, N., Souier, T., Mokri, A., Bououdina, M., Aida, M. S., & Ghers, M. (2014). Structure, microstructure and optical properties of Sn-doped ZnO thin films. Journal of alloys and compounds, 593, 148-153. https://www.doi.org/10.1016/j.jallcom.2014.01.024
- Chen, X. L., Xu, B. H., Xue, J. M., Zhao, Y., Wei, C. C., Sun, J., Wang, Y., Zhang, X. D., & Geng, X. H. (2007). Boron-doped zinc oxide thin films for large-area solar cells grown by metal organic chemical vapor deposition. Thin Solid Films, 515(7-8), 3753-3759. https://www.doi.org/10.1016/j.tsf.2006.09.039
- Chen, R., & Lan, L. (2019). Solution-processed metal-oxide thin-film transistors: A review of recent developments. Nanotechnology, 30(31), 312001. https://www.doi.org/10.1088/1361-6528/ab1860
- Choi, Y. J., Gong, S. C., Johnson, D. C., Golledge, S., Yeom, G. Y., & Park, H. H. (2013). Characteristics of the electromagnetic interference shielding effectiveness of Al-doped ZnO thin films deposited by atomic layer deposition. Applied Surface Science, 269, 92-97. https://www.doi.org/10.1016/j.apsusc.2012.09.159
- Dash, J. N., Das, R., & Jha, R. (2018). AZO coated microchannel incorporated PCF-based SPR sensor: a numerical analysis. IEEE Photonics Technology Letters, 30(11), 1032-1035. https://www.doi.org/10.1109/LPT.2018.2829920
- Farrag, A. A. G., & Balboul, M. R. (2017). Nano ZnO thin films synthesis by sol–gel spin coating method as a transparent layer for solar cell applications. Journal of Sol-Gel Science and Technology, 82, 269-279. https://www.doi.org/10.1007/s10971-016-4277-8
- Kara, I., Atilgan, A., Serin, T., & Yildiz, A. (2017). Effects of Co and Cu dopants on the structural, optical, and electrical properties of ZnO nanocrystals. Journal of Materials Science: Materials in Electronics, 28, 6088-6092. https://www.doi.org/10.1007/s10854-016-6285-4
- Kara, I., Yildiz, A., Yildiz, G., Dogan, B., Serin, N., & Serin, T. (2016). Al and X (Sn, Cu, In) co-doped ZnO nanocrystals. Journal of Materials Science: Materials in Electronics, 27, 6179-6182. https://www.doi.org/10.1007/s10854-016-4546-x
- Kaur, G., Mitra, A., & Yadav, K. L. (2015). Pulsed laser deposited Al-doped ZnO thin films for optical applications. Progress in Natural Science: Materials International, 25(1), 12-21. https://www.doi.org/10.1016/j.pnsc.2015.01.012
- Lee, P. C., Hsiao, Y. L., Dutta, J., Wang, R. C., Tseng, S. W., & Liu, C. P. (2021). Development of porous ZnO thin films for enhancing piezoelectric nanogenerators and force sensors. Nano Energy, 82, 105702. https://www.doi.org/10.1016/j.nanoen.2020.105702
- Liu, Y., & Zhu, S. (2019). Preparation and characterization of Mg, Al and Ga co-doped ZnO transparent conductive films deposited by magnetron sputtering. Results in Physics, 14, 102514. https://www.doi.org/10.1016/j.rinp.2019.102514
- Mahroug, A., Boudjadar, S., Hamrit, S., & Guerbous, L. (2014). Structural, optical and photocurrent properties of undoped and Al-doped ZnO thin films deposited by sol–gel spin coating technique. Materials Letters, 134, 248-251. https://www.doi.org/10.1016/j.matlet.2014.07.099
- Mártil, I., & Díaz, G. G. (1992). Undergraduate laboratory experiment: Measurement of the complex refractive index and the band gap of a thin film semiconductor. American Journal of Physics, 60(1), 83-86. https://www.doi.org/10.1119/1.17049
- Ozel, K., & Yildiz, A. (2021a). Comprehensive understanding of the role of emitter layer thickness for metal–oxide–semiconductors based solar cells. IEEE Journal of Photovoltaics, 12(1), 251-258. https://www.doi.org/10.1109/jphotov.2021.3119612
- Ozel, K., & Yildiz, A. (2021b). The potential barrier-dependent carrier transport mechanism in n-SnO2/p-Si heterojunctions. Sensors and Actuators A: Physical, 332, 113141. https://www.doi.org/10.1016/j.sna.2021.113141
- Ozel, K., & Yildiz, A. (2022). Estimation of maximum photoresponsivity of n‐SnO2/p‐Si heterojunction-based UV photodetectors. Physica Status Solidi (RRL) – Rapid Research Letters, 16(2), 2100490. https://www.doi.org/10.1002/pssr.202100490
- Serin, T., Atilgan, A., Kara, I., & Yildiz, A. (2017). Electron transport in Al-Cu co-doped ZnO thin films. Journal of Applied Physics, 121(9), 095303. https://www.doi.org/10.1063/1.4977470
- Serin, T., Yildiz, A., Uzun, Ş., Çam, E., & Serin, N. (2011). Electrical conduction properties of In-doped ZnO thin films. Physica Scripta, 84(6), 065703. https://www.doi.org/10.1088/0031-8949/84/06/065703
- Shukla, R. K., Srivastava, A., Srivastava, A., & Dubey, K. C. (2006). Growth of transparent conducting nanocrystalline Al doped ZnO thin films by pulsed laser deposition. Journal of crystal growth, 294(2), 427-431. https://www.doi.org/10.1016/j.jcrysgro.2006.06.035
- Soltabayev, B., Er, İ. K., Yildirim, M. A., Ates, A., & Acar, S. (2021). The Dependence of The Nickel Concentration of ZnO Thin Films for Gas Sensors Applications. Gazi University Journal of Science Part A: Engineering and Innovation, 8(1), 157-165.
- Steinhauser, J., Faÿ, S., Oliveira, N., Vallat‐Sauvain, E., Zimin, D., Kroll, U., & Ballif, C. (2008). Electrical transport in boron‐doped polycrystalline zinc oxide thin films. physica status solidi (a), 205(8), 1983-1987. https://www.doi.org/10.1002/pssa.200778878
- Tsay, C. Y., Fan, K. S., & Lei, C. M. (2012). Synthesis and characterization of sol–gel derived gallium-doped zinc oxide thin films. Journal of Alloys and Compounds, 512(1), 216-222. https://www.doi.org/10.1016/j.jallcom.2011.09.066
- Tsay, C. Y., & Hsu, W. T. (2013). Sol–gel derived undoped and boron-doped ZnO semiconductor thin films: preparation and characterization. Ceramics International, 39(7), 7425-7432. https://www.doi.org/10.1016/j.ceramint.2013.02.086
- Tsay, C. Y., Wu, C. W., Lei, C. M., Chen, F. S., & Lin, C. K. (2010). Microstructural and optical properties of Ga-doped ZnO semiconductor thin films prepared by sol–gel process. Thin Solid Films, 519(5), 1516-1520. https://www.doi.org/10.1016/j.tsf.2010.08.170
- Yildiz, A., Serin, T., Öztürk, E., & Serin, N. (2012). Barrier-controlled electron transport in Sn-doped ZnO polycrystalline thin films. Thin Solid Films, 522, 90-94. https://www.doi.org/10.1016/j.tsf.2012.09.006
- Yildiz, A., Uzun, S., Serin, N., & Serin, T. (2016). Influence of grain boundaries on the figure of merit of undoped and Al, In, Sn doped ZnO thin films for photovoltaic applications. Scripta Materialia, 113, 23-26. https://www.doi.org/10.1016/j.scriptamat.2015.10.004
- Yoshino, K., Fukushima, T., & Yoneta, M. (2005). Structural, optical and electrical characterization on ZnO film grown by a spray pyrolysis method. Journal of Materials Science: Materials in Electronics, 16, 403-408. https://www.doi.org/10.1007/s10854-005-2305-5
- Zhang, Y., Liu, C., Liu, J., Xiong, J., Liu, J., Zhang, K., Liu, Y., Peng, M., Yu, A., Zhang, A., Zhang, Y., Wang, Z., Zhai, J., & Wang, Z. L. (2016). Lattice strain induced remarkable enhancement in piezoelectric performance of ZnO-based flexible nanogenerators. ACS Applied Materials & Interfaces, 8(2), 1381-1387. https://www.doi.org/10.1021/acsami.5b10345
- Zhao, D., Sathasivam, S., Wang, M., & Carmalt, C. J. (2022). Transparent and conducting boron doped ZnO thin films grown by aerosol assisted chemical vapor deposition. RSC Advances, 12(51), 33049-33055. https://www.doi.org/10.1039/D2RA05895B