Bayal, Ö., Balcı, E., Bılgılı, A. K., Öztürk, M., Özçelik, S., Özbay, E. (2023). Analysis of Dislocation Density for GaN Based HEMTs in Screw Mod. Gazi University Journal of Science Part A: Engineering and Innovation, 10(2), 131-139. https://doi.org/10.54287/gujsa.1215224
Bilgili, A. K., Hekin, E., Öztürk, M. K., Özçelik, S., & Özbay, E. (2021). Mosaic defect and AFM study on GaN/AlInN/AlN/Sapphire HEMT structures. Politeknik Dergisi, 25(4), 1613-1619. http://doi.org/10.2339/politeknik.787700
Chen, W., Inagava, Y., Omatsu, T., Tateda, M., Takeuchi, N., Usuki, Y. (2001). Diode-pumped, self-stimulating, passively Q-switched Nd3+: PbWO4 Raman laser. Optics communications, 194(4-6), 401-407. http://doi.org/10.1016/S0030-4018(01)01148-8
Christopher, M., Kafle, K., Belias, D., Park, Y., Glick, R., Haigler, C., Kim, S. (2015). Comprehensive analysis of cellulose content, crystallinity, and lateral packing in Gossypium hirsutum and Gossypium barbadense cotton fibers using sum frequency generation, infrared and Raman spectroscopy, and X-ray diffraction. Cellulose, 22, 971-989. http://doi.org/10.1007/s10570-014-0535-5
Harima, H. (2002). Properties of GaN and related compounds studied by means of Raman scattering. Journal of Physics: Condensed Matter, 14, 38. http://doi.org/10.1088/0953-8984/14/38/201
Harish, D. V. N. (2021). Investigation of thermal residual stresses during laser ablation of tantalum carbide coated graphite substrates using micro-Raman spectroscopy and COMSOL multiphysics. Ceramics International, 47(3), 3498-3513. https://doi.org/10.1080/23311916.2024.2398650
Huang, W., Zhu, X., Wua, D., He, C., Hu, X., Duan, C. (2009). Structural modification of rhodamine-based sensors toward highly selective mercury detection in mixed organic/aqueous media. Dalton Transactions, 47, 10457-10465. https://doi.org/10.1039/B914490K
Jiang, Y. C., Ju, Gao., & Wang, L. (2016). Raman fingerprint for semi-metal WTe2 evolving from bulk to monolayer. Scientific Reports, 6(1), 19624. http://doi.org/10.7907/vh7k-4w84
Li, Y., Xiang, J., Qian, F., Gradecak, S., Wu, Y., Yan, H., Blom, D. A., & Lieber, C. M. (2006). Dopant-free GaN/AlN/AlGaN radial nanowire heterostructures as high electron mobility transistors. Nano Letters, 6(7), 1468-1473. https://doi.org/10.1021/nl060849z
Miyata, N., Watanabe, S., & Okamura, S. (1997). Infrared and Raman study of H-terminated Si(100) surfaces produced by etching solutions. Applied Surface Science, 117-118, (26-31). https://doi.org/10.1016/S0169-4332(97)80046-3
Supekar, D., Brown, J., Alan, G., Juliet, G., Bright, V. (2018). Real-time detection of reverse-osmosis membrane scaling via Raman spectroscopy. Industrial & Engineering Chemistry Research, 57(47), 16021-16026. http://doi.org/10.1021/acs.iecr.8b01272
Vurgaftman, I., Meyer, J. R. (2003). Band parameters for nitrogen-containing semiconductors. Journal of Applied Physics, 94(6), 3675-3696. https://doi.org/10.1063/1.1600519
Wu, D. Y., Li, J. F., Ren, B., Tian, Z. O. (2008). Electrochemical surface-enhanced Raman spectroscopy of nanostructures. Chemical Society Reviews, 37(5), 1025-1041. http://doi.org/10.1039/b707872
Zhang, Ye., Jia, H., Wang, R., Chen, C., Luo, X., Yu, D. (2003). Low-temperature growth and Raman scattering study of vertically aligned ZnO nanowires on Si substrate. Applied Physics Letters, 83(22), 4631-4633. https://doi.org/10.1063/1.1760594
Determination of stress from HR-XRD and Raman for GaN/AlInN/AlN/Sapphire HEMTs
Year 2025,
Volume: 12 Issue: 1, 119 - 126, 26.03.2025
In this study, structural properties of GaN/AlInN/AlN/sapphire high electron mobility transistors (HEMTs), grown by metal organic chemical vapor deposition technique, are investigated. High resolution X-ray diffraction technique (HR-XRD) and Raman mesurements are made to determine stress values and stress type for GaN layers dependent on Al content. It is seen that stress values gained from these two techniques are approximately at the same level. It is noticed that there is tensile stress in all three samples according to Raman shift measurements. Also strain values are calculated by using full width at half maximum (FWHM) values in HR-XRD pattern.
Bayal, Ö., Balcı, E., Bılgılı, A. K., Öztürk, M., Özçelik, S., Özbay, E. (2023). Analysis of Dislocation Density for GaN Based HEMTs in Screw Mod. Gazi University Journal of Science Part A: Engineering and Innovation, 10(2), 131-139. https://doi.org/10.54287/gujsa.1215224
Bilgili, A. K., Hekin, E., Öztürk, M. K., Özçelik, S., & Özbay, E. (2021). Mosaic defect and AFM study on GaN/AlInN/AlN/Sapphire HEMT structures. Politeknik Dergisi, 25(4), 1613-1619. http://doi.org/10.2339/politeknik.787700
Chen, W., Inagava, Y., Omatsu, T., Tateda, M., Takeuchi, N., Usuki, Y. (2001). Diode-pumped, self-stimulating, passively Q-switched Nd3+: PbWO4 Raman laser. Optics communications, 194(4-6), 401-407. http://doi.org/10.1016/S0030-4018(01)01148-8
Christopher, M., Kafle, K., Belias, D., Park, Y., Glick, R., Haigler, C., Kim, S. (2015). Comprehensive analysis of cellulose content, crystallinity, and lateral packing in Gossypium hirsutum and Gossypium barbadense cotton fibers using sum frequency generation, infrared and Raman spectroscopy, and X-ray diffraction. Cellulose, 22, 971-989. http://doi.org/10.1007/s10570-014-0535-5
Harima, H. (2002). Properties of GaN and related compounds studied by means of Raman scattering. Journal of Physics: Condensed Matter, 14, 38. http://doi.org/10.1088/0953-8984/14/38/201
Harish, D. V. N. (2021). Investigation of thermal residual stresses during laser ablation of tantalum carbide coated graphite substrates using micro-Raman spectroscopy and COMSOL multiphysics. Ceramics International, 47(3), 3498-3513. https://doi.org/10.1080/23311916.2024.2398650
Huang, W., Zhu, X., Wua, D., He, C., Hu, X., Duan, C. (2009). Structural modification of rhodamine-based sensors toward highly selective mercury detection in mixed organic/aqueous media. Dalton Transactions, 47, 10457-10465. https://doi.org/10.1039/B914490K
Jiang, Y. C., Ju, Gao., & Wang, L. (2016). Raman fingerprint for semi-metal WTe2 evolving from bulk to monolayer. Scientific Reports, 6(1), 19624. http://doi.org/10.7907/vh7k-4w84
Li, Y., Xiang, J., Qian, F., Gradecak, S., Wu, Y., Yan, H., Blom, D. A., & Lieber, C. M. (2006). Dopant-free GaN/AlN/AlGaN radial nanowire heterostructures as high electron mobility transistors. Nano Letters, 6(7), 1468-1473. https://doi.org/10.1021/nl060849z
Miyata, N., Watanabe, S., & Okamura, S. (1997). Infrared and Raman study of H-terminated Si(100) surfaces produced by etching solutions. Applied Surface Science, 117-118, (26-31). https://doi.org/10.1016/S0169-4332(97)80046-3
Supekar, D., Brown, J., Alan, G., Juliet, G., Bright, V. (2018). Real-time detection of reverse-osmosis membrane scaling via Raman spectroscopy. Industrial & Engineering Chemistry Research, 57(47), 16021-16026. http://doi.org/10.1021/acs.iecr.8b01272
Vurgaftman, I., Meyer, J. R. (2003). Band parameters for nitrogen-containing semiconductors. Journal of Applied Physics, 94(6), 3675-3696. https://doi.org/10.1063/1.1600519
Wu, D. Y., Li, J. F., Ren, B., Tian, Z. O. (2008). Electrochemical surface-enhanced Raman spectroscopy of nanostructures. Chemical Society Reviews, 37(5), 1025-1041. http://doi.org/10.1039/b707872
Zhang, Ye., Jia, H., Wang, R., Chen, C., Luo, X., Yu, D. (2003). Low-temperature growth and Raman scattering study of vertically aligned ZnO nanowires on Si substrate. Applied Physics Letters, 83(22), 4631-4633. https://doi.org/10.1063/1.1760594
Bayal, Ö., Bılgılı, A., Hekin, E., Kaya, N., et al. (2025). Determination of stress from HR-XRD and Raman for GaN/AlInN/AlN/Sapphire HEMTs. Gazi University Journal of Science Part A: Engineering and Innovation, 12(1), 119-126. https://doi.org/10.54287/gujsa.1636694