Araştırma Makalesi
BibTex RIS Kaynak Göster

Rüzgâr Enerji Santrali kurulumunda rüzgâr türbinlerinin mikro yerleşimi için bir optimizasyon modeli

Yıl 2018, Cilt: 6 Sayı: 4, 898 - 908, 30.12.2018
https://doi.org/10.29109/gujsc.424155

Öz

Rüzgâr
enerjisi santrali (RES) kurulumunda türbinlerin mikro yerleşimi en önemli
konulardan biridir. Türbinlerin uygun şekilde yerleştirilmesi RES’in üretim
miktarının artmasını sağlamaktadır. Bu çalışmada RES kurulumu için bir
optimizasyon modeli geliştirilmiştir. İlk olarak RES’in kurulacağı bölge
karesel alanlara bölünmüştür. Bu alanlardaki rüzgâr
hızı olasılık yoğunluk fonksiyonu Weibull eğrisi kullanılarak modellenmiştir.
Bu eğrinin A ve k parametreleri WAsP (Rüzgâr Atlası Analiz ve Uygulama
Programı) yazılımından elde edilmiştir. Daha sonra bu alanlara türbin
yerleştirilmesi durumunda üretilecek enerji, olasılık yoğunluk fonksiyonu ve
türbin güç eğrisi kullanılarak hesaplanmıştır. Modelin çözümünde Genetik
Algoritma (GA) kullanılmıştır. Türbin koordinatları, RES'in enerji üretimini en
üst düzeye çıkarmaya yardımcı olan GA tarafından belirlenmiştir. Modelin
uygulamasındaki RES Danimarka Roskilde bölgesine kurulmuştur. Bölge 20×20 adet
karesel alanlara bölünmüştür. RES her birinin gücü 2 MW olan 10 adet Bonus
türbinden oluşmaktadır. Son olarak ise WAsP yazılımından güç yoğunluğu
haritası
elde edilmiştir. Model çözümünde bulunan koordinatlara türbinler
yerleştirildiğinde, koordinatların en yüksek güç yoğunluğuna sahip alanlar
olduğu görülmüştür. Bu sonuç, önerilen modelin RES kurulumunda etkili bir
şekilde türbin yerleşimi yaptığını göstermiştir.

Kaynakça

  • [1] Dünya rüzgar enerjisi derneği. "Rüzgâr kapasitesi". http://www.indea.org/2017-statistics/ (04.03.2018)
  • [2] Imal M, Sekkeli M, Yildiz C, Kececioglu, OF. Wind energy potential estimation and evaluation of electricity generation in Kahramanmaras, Turkey. Energy Education Science and Technology Part A-Energy Science and Research, 30(661-672), (2012).
  • [3] Şekkeli M, Yildiz C, Karik F, Sözen A. Wind Energy in Turkey Electricity Market. Gazi Journal of Engineering Science, 1(253-264), (2015).
  • [4] Karadöl İ, Keçecioğlu OF, Açıkgöz H, Şekkeli M. Examination of Solar and Wind Energy Hybrid System for Kahramanmaraş Region, Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 2(89-96), (2017).
  • [5] Chen K, Song MX, Zhang X, Wang SF. Wind turbine layout optimization with multiple hub height wind turbines using greedy algorithm. Renewable Energy, 96(676–686), (2016).
  • [6] Sekkelı M, Keçecioğlu OF, Açıkgöz H, Yıldız C. A Comparison between theoretically calculated and actually generated electrical powers of wind turbines: A case study in Belen wind farm, Turkey. Academic Platform-Journal of Engineering and Science, 1(41-47), (2015).
  • [7] Yıldız C, Tekin M, Gani A, Kececioglu OF, Acikgoz H, Sekkeli M. Considering air density effect on modelling wind farm power curve using site measurements. Press Academia Procedia, 5(420-430), (2017).
  • [8] Yang J, Zhang R, Sun Q, Zhang H. Optimal wind turbines micrositing in onshore wind farms using fuzzy genetic algorithm, Mathematical Problems in Engineering, 2015(1-9), (2015).
  • [9] Brusca S, Lanzafame R, Messina M. Wind turbine placement optimization by means of the Monte Carlo simulation method, Modelling and Simulation in Engineering, 2014(1-8), (2014).
  • [10] Eroglu Y, Seckiner SU. Wind farm layout optimization using particle filtering approach, Renewable Energy, 58(95-107), (2013).
  • [11] Park J, Law KH. Layout optimization for maximizing wind farm power production using sequential convex programming, Applied Energy, 151(320-334), (2015). [12] Song MX, Chen K, He ZY, Zhang X. Optimization of wind farm micro-siting for complex terrain using greedy algorithm, Energy, 67(454–459), (2014).
  • [13] Mosetti G, Poloni C, Diviacco B. Optimization of wind turbine positioning in large windfarms by means of a genetic algorithm, Journal of Wind Engineering and Industrial Aerodynamics, 51(105-116), (1994).
  • [14] Stevens M, Smulders P. The estimation of the parameters of the Weibull wind speed distribution for wind energy utilization purposes. Wind Engineering, 3(132–45), (1979).
  • [15] Burton T, Jenkins N, Sharpe D, Bossanyi E. (2011) Wind energy handbook. (2nd Edition), John Wiley &Sons.
  • [16] Kusiak A, Song Z. Design of wind farm layout for maximum wind energy capture. Renewable Energy, 35(685–94), (2010).
  • [17] Emami A, Noghreh P. New approach on optimization in placement of wind turbines with in wind farm by genetic algorithms. Renewable Energy, 35(1559–64), (2010).
  • [18] Serrano-González J, Gonzalez-Rodriguez AG, Castro-Mora J, Riquelme-Santos J, Burgos-Payan M. Optimization of wind farm turbines layout using an evolutive algorithm. Renewable Energy, 35(1671–81), (2010). [19] Serrano-González J, Gonzalez-Rodriguez AG, Castro-MoraJ, Riquelme-Santos J, Burgos-Payan M. Overall design optimization of wind farms. Renewable Energy, 36(1973-82), (2011).
  • [20] Saavedra-Moreno B, Salcedo-Sanz S, Paniagua-Tineo A, Prieto L, Portilla- Figueras A. Seeding evolutionary algorithms with heuristics for optimal wind turbines positioning in wind farms. Renewable Energy, 36(2838–44), (2011).
  • [21] Grady SA, Hussaini M, Abdullah MM. Placement of wind turbines using genetic algorithms. Renewable Energy, 30(259–70), (2005). [22] Marmidis G, Lazarou S, Pyrgioti E. Optimal placement of wind turbines in a wind park using Monte Carlo simulation. Renewable Energy, 33(1455-60), (2008).
  • [23] Eroğlu Y, Seçkiner SU. Design of wind farm layout using ant colony algorithm. Renewable Energy, 44(53–62), 2012.
  • [24] Wagner M, Day J, Neumann F. A fast and effective local search algorithm for optimizing the placement of wind turbines. Renewable Energy, 51(64–70), (2013).
  • [25] Rajper S, AminI J. Optimization of wind turbine micrositing: a comparative study. Renewable and Sustainable Energy Reviews, 16(85-92), (2012).
  • [26] Serrano-González J, Burgos-Payan M, Riquelme-Santos J M .Optimization of wind farm turbine layout including decision making under risk. IEEE Systems Journal, 6(94-10), (2012).
  • [27] Ozturk UA, Norman BA. Heuristic methods for wind energy conversion system positioning. Electric Power Systems Research, 70(179-185), (2004).
  • [28] Justus CG, Hargraves WR, Mikhail A, Graber D. Methods for estimating wind speed frequency distributions. Journal of Applied Meteorology, 17(350-353), (1978).
  • [29] Bonus 2MW Turbine (2018), https://en.wind-turbine-models.com/turbines/121-bonus-b76-2000 (04.03.2018).
  • [30] Goldberg D. (1989). Genetic Algorithms in Search Optimization and Machine Learning. (1nd ed). Boston, England, Addison-Wesley Professional.
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

İbrahim Çelik 0000-0001-5923-554X

Ceyhun Yıldız 0000-0002-5498-4127

Mustafa Şekkeli 0000-0002-1641-3243

Yayımlanma Tarihi 30 Aralık 2018
Gönderilme Tarihi 16 Mayıs 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 6 Sayı: 4

Kaynak Göster

APA Çelik, İ., Yıldız, C., & Şekkeli, M. (2018). Rüzgâr Enerji Santrali kurulumunda rüzgâr türbinlerinin mikro yerleşimi için bir optimizasyon modeli. Gazi University Journal of Science Part C: Design and Technology, 6(4), 898-908. https://doi.org/10.29109/gujsc.424155

Cited By




FV sistemler için DSP tabanlı hibrit kontrol yöntemi
Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi
https://doi.org/10.17341/gazimmfd.1062711




                                     16168      16167     16166     21432        logo.png


    e-ISSN:2147-9526