Araştırma Makalesi
BibTex RIS Kaynak Göster

Mekanik Alaşımlama Metodu ile Üretilen Al-4.5Cu/SiC Kompozitin Termal ve Mikroyapısal Özelliklerinin İncelenmesi

Yıl 2020, Cilt: 8 Sayı: 2, 405 - 417, 28.06.2020
https://doi.org/10.29109/gujsc.704063

Öz

Bu çalışmada, farklı oranlarda SiC takviyeli Al4.5Cu alaşım matrisli kompozitleri farklı öğütme sürelerinde mekanik alaşımlama yöntemiyle üretilmiştir. Katkı miktarının ve öğütme süresinin kompozitin termal ve yapısal özellikleri üzerine olan etkisi incelenmiştir. Üretilen kompozitlerin mikroyapı özellikleri X-ışını kırınımı (XRD) ve taramalı elektron mikroskobu (SEM) ile termal davranışları ise diferansiyel termal analiz (DTA) ile araştırılmıştır. Üretilen toz kompozitler preslendikten sonra sinterleme işlemine de maruz bırakılmıştır. Sinterlenen numunelerin yüzey analizleri optik mikroskop ile incelenmiştir ve ayrıca yüzey sertlikleri de ölçülmüştür. XRD ve SEM sonuçları öğütme süresi arttıkça tane boyutunda küçülme ve daha homojen bir yapı oluştuğunu göstermiştir. DTA sonuçlarına göre sürekli ısıtma esnasında 550-650 oC sıcaklık aralığında faz dönüşümünü işaret eden bir dizi ekzotermik pik gözlenmiştir. Optik mikroskop sonuçlarının SEM analizleri ile uyum içinde olduğu ve ayrıca yüzey sertliğinin katkı miktarı ve öğütme süresi arttıkça arttığı görülmüştür.

Destekleyen Kurum

Batman Üniversitesi Bilimsel Araştırma Projeleri Koordinasyonu

Proje Numarası

BTÜBAP-2019-YL-11

Teşekkür

Batman Üniversitesi Bilimsel Araştırma Projeleri Koordinasyonuna BTÜBAP-2019-YL-11 nolu proje ile çalışmamıza sağladığı finansal destek için teşekkür ederiz.

Kaynakça

  • [1] Ahmad Z., Khan S. A review paper on tribological and mechanical properties of Aluminium metal matrix composites manufactured by different route. International Jjournal of Current Engineering and Scientific Research, 1:4(1-8), (2014). [2] Arakawa S., Hatayama T., Matsugi K., and Yanagisawa O.Effect of heterogeneous precipitation on age-hardening of Al2O3 particle dispersion Al-4mass%Cu composite produced by mechanical alloying. Scripta Materialia, 42(755–760), (2000). [3] Durai T. G., Karabi Das and Siddhartha D. Al (Zn)–4Cu/Al2O3 in-situ metal matrix composite synthesized by displacement reactions. Journal of Alloys and Compounds, 457(435-439), (2008). [4] Murthy V. S. R., and Rao B. S. Microstructural development in the directed melt-oxidized (DIMOX) Al-Mg-Si alloys. Journal of Materials Science, 30(3091-3097), (1995). [5] Breslin M. C., Ringnalda J., Xu L., Fuller M., Seeger J., Daehn G. S., Otani T. and Fraser H. L. Processing, microstructure, and properties of co-continuous alumina-aluminum composites. Materials Science and Engineering A, 195(113–119), (1995). [6] Liu W. and Köster U. Decomposition of the icosahedral phase in AlCuFe alloys. Materials Science and Engineering A, 133(C)(388-392), (1991). [7] Abd El-Azim A. N., Kassem M. A., El-Baradie Z. M. and Waly M. Structure and properties of short alumina fibre reinforced AlSi18CuNi produced by stir casting. Materials Letters, 56(963-969), (2002). [8] Badini C., Fino P., Musso M. and Dinardo P. Thermal fatigue behaviour of a 2014/Al2O3-SiO2 (Saffil® fibers) composite processed by squeeze casting. Materials Chemistry and Physics, 64(247-255), (2000). [9] Wei-chen Zhai, Zhao-hui Zhang, Fu-chi Wang, Xiang-bo Shen, Shukui Lee, and Lu Wang. Effect of SI content on microstructure and properties of Si/Al composites. Transactions of Nonferrous Metals Society of China, 24(982-988), (2014). [10] Ribes H., Suery M., Esperance G. L., and Legoux J.G. Microscopic examination of the interface region in 6061-Al/SiC composites reinforced with asreceived and oxidized SiC particles. Metallurgical and Materials Transactions A, 21(2489–2496), (1999). [11] Kumar G., Rao C., Selvaraj N., Mechanical and Tribological Behavior of Particulate Reinforced Aluminum Metal Matrix Composites – a review. Journal of Minerals & Materials Characterization & Engineering, 10(1) (59–91), (2011). [12] Baisane V. P., Sable Y.S., Dhobe M. M., Sonawane P.M. Recent development and challenges in processing of ceramics reinforced Al matrix composite through stir casting process: A Review. International Journal of Engineering and Applied Sciences, 2(10)(11-16), (2015). [13] Sur G., Şahin Y., Gökkaya H., Production of aluminum based particulate reinforced composites using molten metal mixing and squeeze casting methods. J. Fac. Eng. Arch. Gazi Univ. 20 (2) (233-238), (2005). [14] Kim S. W., Lee U. J., Han S. W., Kim D. K., K. Ogi, Heat treatment and wear characteristics of Al/SiCp composites fabricated by duplex process. Composites: Part B 34 (2003) 737–745. [15] Carvalho O., Madeira S., Buciumeanu M., Soares D., Silva F.S., Miranda G. Pressure and sintering temperature influence on the interface reaction of SiCp /410L stainless steel composites. Journal of Composite Materials, 50(15)(2005-2015), (2016) [16] Saravanan C., Subramanian K., Ananda V., Sankara R. Effect of Particulate Reinforced Aluminium Metal Matrix Composite – A Review. Mechanics and Mechanical Engineering, 19(1)(23-30), (2015). [17] Venkatesh B., Harish B. Mechanical properties of metal matrix composites (Al/SiCp ) particles produced by powder metallurgy. International Journal of Engineering Research and General Science, 3(1)(1277-1284), (2015). [18] Leszczyńska-Madej B. The effect of sintering temperature on microstructure and properties of Al – SiC composites. Archives of Metallurgy and Materials, 58(1)(43–48), (2013). [19] Suryanarayanan K., Praveen R., Raghuraman S. Silicon Carbide Reinforced Aluminium Metal Matrix Composites for Aerospace Applications: A Literature Review. International Journal of Innovative Research in Science, Engineering and Technology, 2(11)(6336–6344), (2013). [20] Yodkaew T., Morakotjinda M., Tosangthum N., Coovattanachai O., Krataitong R., Siriphol P., Vetayanugul B., Chakthin S., Poolthong N., Tongsri R. Sintered Fe-Al2 O3 and Fe-SiC Composites. Journal of Metals, Materials and Minerals, 18(1)(57–61), (2008). [21] Abhik R., Xaviora M. Evaluation of Properties for Al-SiC Reinforced Metal Matrix Composite for Brake Pads. Procedia Engineering, 97(941–950), ( 2014). [22] Zakaria H.M. Microstructural and corrosion behavior of Al/SiC metal matrix composites. Ain Shams Engineering Journal, 5(3)(831–838), (2014). [23] Akhtar F. Ceramic reinforced high modulus steel composites: processing, microstructure and properties., Canadian Metallurgical Quarterly, 53(3)(253–263), (2014). [24] Singla M., Dwivedi D., Singh L., Chawla V. Development of Aluminium Based Silicon Carbide Particulate Metal Matrix Composite. Journal of Minerals & Materials Characterization & Engineering, 8(6)(455–467), (2009). [25] Nuruzzaman D., Kamaruzaman F. Processing and mechanical properties of aluminiumsilicon carbide metal matrix composites. Materials Science and Engineering, 114(11-17), (2016). [26] Çelik Y.H., Kilickap E. Hardness and Wear Behaviours of Al Matrix Composites and Hybrid Composites Reinforced with B4C and SiC. Powder Metallurgy and Metal Ceramics, 57 (9-10) (613-622), (2019). [27] Ozben T., Kilickap E., Cakir O. Investigation of mechanical and machinability properties of SiC particle reinforced Al-MMC. Journal of Materials Processing Technology, 198(220-225), (2008). [28] Kilickap E., Cakir O., Aksoy M., Inan A. Study of tool wear and surface roughness in machining of homogenised SiC-p reinforced aluminium metal matrix composite. Journal of Materials Processing Technology, 164-165(862-867), (2005). [29] Song G.M., Zhou Y. and Wang Y. J. Effect of carbide articles on the ablation properties of tungsten composites. Materials Characterization, 50(293-303), (2003). [30] Tang H. G., Ma X. F., Zhao W., Yan J. M. and Zhu C. J. Crystallization of mechanically alloyed amorphous W-Mg alloy under high pressure. Solid State Communications, 129(147-150), (2004). [31] Suryanarayana C. Mechanical alloying and milling. Progress in Materials Science, 46(1-184), (2001). [32] Nakazato R.Z, Codaro E.N., Horovistiz A.L and Hein L.R.O. A metallurgical study of aluminum alloys used as aircraft components. Praktische Metallographie-Practical Metallography, 38 (2)(74-87), (2001). [33] Okumuş M., Mekanik alaşımlama yöntemi ile üretilen nanoyapılı Al66Co20Cu14 tozlarının termal ve mikroyapısal özellikleri. BEÜ Fen Bilimleri Dergisi, 9 (1) (366-375), (2020). [34] Mandal A., Maiti R., Chakraborty M., Murty B.S. Effect of TiB2 particles on aging response of Al–4Cu alloy. Materials Science and Engineering A, 386(296–300), (2004). [35] Avar B. , Şimşek T., Göğebakan M. Mekanik Alaşımlama ile Üretilen Nanokristal Fe60Al30Cu10 (at.%) Tozların Yapısal ve Mekanik Özellikleri. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji , 7 (1) (184-191), (2019). [36] Reiso O., Øverlie H.G., Ryum N. Dissolution and melting of secondary Al2Cu phase particles in an AlCu alloy. Metallurgical Transactions A, 21(6)(1689–1695), (1990). [37] Luangvaranunt T., Dhadsanadhep C., Umeda J., Nisaratanaporn E., Kondoh K. Aluminum-4 mass%Copper/Alumina Composites Produced from Aluminum Copper and Rice Husk Ash Silica Powders by Powder Forging. Materials Transactions, 51(4)(756-761), (2010). [38] Türker M., Özdemir A. T., Ögel B. ve Yavuz A. (Alüminyum-SiC Tozlarının Mekanik Alaşımlama Değirmeninde Öğütme Zamanının Kompozit Toz Yapısına Etkisinin Araştırılması. Uluslararası Katılımlı 2. Ulusal Toz Metalürjisi Konferansı, Ankara, (425-431), (1999). [39] Chandrasekhar G. L., Vijayakumar Y., Nagaral M. Investigations on Mechanical Properties of Al-4.5% Cu-SiC and Al-4.5%Cu-Graphite Composites. European Journal of Engineering Research and Science, 1(1)(30-33), (2016). [40] Debnath S., Swami V., Rai R. N. Microstructures and Mechanical Properties Studies of the Directional Solidified Developed Ex-Situ Al-4.5% Cu-SiCp Metal-Matrix Composites. Journal of Engineering and Applied Sciences, 13(3)(3273-3277), (2018). [41] Wąsik A., Madej B. L., Madej M. The influence of SiC particle size on mechanical properties of aluminium matrix composites. Metallurgy and Foundry Engineering 43(1)(41–49), (2017). [42] Qiu F., Gao X., Tang J., Gao Y.-Y., Shu S.-L., Han X., Li Q., Jiang Q.-C. Microstructures and Tensile Properties of Al–Cu Matrix Composites Reinforced with Nano-Sized SiCp Fabricated by Semisolid Stirring Process., Metals, 7(2): 49, (2017) [43] Penchal Reddy M., Shakoor R.A., Gururaj Parande, Vyasaraj Manakari, Ubaid F., Mohamed A.M.A., Manoj Gupta. Enhanced performance of nano-sized SiC reinforced Al metal matrix nanocomposites synthesized through microwave sintering and hot extrusion techniques. Progress in Natural Science: Materials International, 27(5)(606-614), (2017). [44] Izadi H., Nolting A., Munro C., Bishop D.P., Plucknett K.P., Gerlich A.P. Friction stir processing of Al/SiC composites fabricated by powder metallurgy. Journal of Materials Processing Technology, 213(11)(1900-1907), (2013). [45] Anggara B.S., Handoko E., Soegijono B. Mechanical Properties of Al-Cu Alloy-SiC Composites. AIP Conference Proceedings, 1617(109-111) (2014). [46] Arık H. Al-Si3N4 Toz Metal Kompozit Malzeme Üretimi ve Aşınma Davranışının Araştırılması. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji , 7 (4)(776-787), (2019).
Toplam 1 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Metroloji,Uygulamalı ve Endüstriyel Fizik, Mühendislik
Bölüm Tasarım ve Teknoloji
Yazarlar

Mustafa Okumuş 0000-0003-0369-7686

Berna Bülbül Bu kişi benim 0000-0002-1384-3547

Proje Numarası BTÜBAP-2019-YL-11
Yayımlanma Tarihi 28 Haziran 2020
Gönderilme Tarihi 15 Mart 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 8 Sayı: 2

Kaynak Göster

APA Okumuş, M., & Bülbül, B. (2020). Mekanik Alaşımlama Metodu ile Üretilen Al-4.5Cu/SiC Kompozitin Termal ve Mikroyapısal Özelliklerinin İncelenmesi. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 8(2), 405-417. https://doi.org/10.29109/gujsc.704063

                                     16168      16167     16166     21432        logo.png   


    e-ISSN:2147-9526