Manyetik Rezonans Kuplajlı Kablosuz Enerji Transfer Sistemi için Empedans Analizi ve Değişken Kapasite Dizisi Uygulaması
Yıl 2020,
Cilt: 8 Sayı: 4, 1005 - 1020, 29.12.2020
Fatih Issı
,
Orhan Kaplan
Öz
Seri-Seri manyetik rezonans kuplajlı kablosuz enerji aktarım sistemlerinde mesafenin değişmesi verimi doğrudan etkilemektedir. Verimin yüksek tutulabilmesi amacı ile kullanılan seri kapasite değerinin verime etkisi modellenmiş ve uygulanmıştır. Modellemede kullanılan kapasite değerleri tanımlanırken kapasitelerin etiket değerlerine göre tanımlandığı ve gerçek değerlerinin ölçülerek tanımlandığı durumlar analiz edilmiştir. Çalışmada esnek bir değişken kapasite uygulaması gerçekleştirilmiştir. Uygulamada kullanılan kapasitelerin gerçek değerleri ölçülerek sistemin giriş empedansı hesaplanmıştır. Mesafenin değişimi ile empedanstaki değişim incelenmiştir. Çalışma sonucunda, giriş empedansının mesafeye bağlı olarak değişimini analiz edilebilen bir model elde edilmiş ve uygulanmıştır. Modelde kullanılan kapasitelerin gerçek değerlerine göre tanımlanması gerektiği vurgulanmıştır. Modellemede elde edilen sonuçlara göre kapasite topolojisinin oluşturulması istenilene en yakın sonuçlara ulaştığı görülmüştür.
Destekleyen Kurum
Gazi Üniversitesi Bilimsel Araştırmalar Projeleri Birimi
Proje Numarası
07/2018-10
Teşekkür
Gazi Üniversitesi Bilimsel Araştırmalar Projeleri Birimi tarafından 07/2018-10 kodu ile desteklenmiştir.
Kaynakça
- X. Liu, L. Clare, X. Yuan, C. Wang, and J. Liu, "A Design Method for Making an LCC Compensation Two-Coil Wireless Power Transfer System More Energy Efficient Than an SS Counterpart," Energies, vol. 10, no. 9, p. 1346, 2017.
- X. Liu, T. Wang, X. Yang, N. Jin, and H. Tang, "Analysis and Design of a Wireless Power Transfer System with Dual Active Bridges," Energies, vol. 10, no. 10, p. 1588, 2017.
- Z. Zhang, K. T. Chau, C. Liu, F. Li, and T. W. Ching, "Quantitative Analysis of Mutual Inductance for Optimal Wireless Power Transfer via Magnetic Resonant Coupling," IEEE Transactions on Magnetics, vol. 50, no. 11, pp. 1-4, 2014, doi: 10.1109/TMAG.2014.2329298.
- G. Tortora, F. Mulana, G. Ciuti, P. Dario, and A. Menciassi, "Inductive-Based Wireless Power Recharging System for an Innovative Endoscopic Capsule," Energies, vol. 8, no. 9, pp. 10315-10334, 2015.
- R. Xue, K. Cheng, and M. Je, "High-Efficiency Wireless Power Transfer for Biomedical Implants by Optimal Resonant Load Transformation," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 60, no. 4, pp. 867-874, 2013, doi: 10.1109/TCSI.2012.2209297.
- A. Shekhar, V. Prasanth, P. Bauer, and M. Bolech, "Economic Viability Study of an On-Road Wireless Charging System with a Generic Driving Range Estimation Method," Energies, vol. 9, no. 2, p. 76, 2016.
- Y. Gao, K. B. Farley, and Z. T. H. Tse, "A Uniform Voltage Gain Control for Alignment Robustness in Wireless EV Charging," Energies, vol. 8, no. 8, pp. 8355-8370, 2015.
- U. K. Madawala and D. J. Thrimawithana, "A Bidirectional Inductive Power Interface for Electric Vehicles in V2G Systems," IEEE Transactions on Industrial Electronics, vol. 58, no. 10, pp. 4789-4796, 2011, doi: 10.1109/TIE.2011.2114312.
- J. Shin et al., "Design and Implementation of Shaped Magnetic-Resonance-Based Wireless Power Transfer System for Roadway-Powered Moving Electric Vehicles," IEEE Transactions on Industrial Electronics, vol. 61, no. 3, pp. 1179-1192, 2014, doi: 10.1109/TIE.2013.2258294.
- H. Huy, L. Seunggyu, K. Youngsu, C. Yunho, and F. Bien, "An adaptive technique to improve wireless power transfer for consumer electronics," in 2012 IEEE International Conference on Consumer Electronics (ICCE), 13-16 Jan. 2012 2012, pp. 359-360, doi: 10.1109/ICCE.2012.6161901.
- J. C. Lin, "Wireless Power Transfer for Mobile Applications, and Health Effects [Telecommunications Health and Safety]," IEEE Antennas and Propagation Magazine, vol. 55, no. 2, pp. 250-253, 2013, doi: 10.1109/MAP.2013.6529362.
- Y. Lu and D. B. Ma, "Wireless Power Transfer System Architectures for PorTablo or ImplanTablo Applications," Energies, vol. 9, no. 12, p. 1087, 2016.
- R. Bashirullah, "Wireless Implants," IEEE Microwave Magazine, vol. 11, no. 7, pp. S14-S23, 2010, doi: 10.1109/MMM.2010.938579.
- A. P. Sample, D. A. Meyer, and J. R. Smith, "Analysis, Experimental Results, and Range Adaptation of Magnetically Coupled Resonators for Wireless Power Transfer," IEEE Transactions on Industrial Electronics, vol. 58, no. 2, pp. 544-554, 2011, doi: 10.1109/tie.2010.2046002.
- A. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljačić, "Wireless Power Transfer via Strongly Coupled Magnetic Resonances," Science, vol. 317, no. 5834, pp. 83-86, 2007, doi: 10.1126/science.1143254.
- B. H. Waters, A. P. Sample, P. Bonde, and J. R. Smith, "Powering a Ventricular Assist Device (VAD) With the Free-Range Resonant Electrical Energy Delivery (FREE-D) System," Proceedings of the IEEE, vol. 100, no. 1, pp. 138-149, 2012, doi: 10.1109/JPROC.2011.2165309.
- Z. N. Low, R. A. Chinga, R. Tseng, and J. Lin, "Design and Test of a High-Power High-Efficiency Loosely Coupled Planar Wireless Power Transfer System," IEEE Transactions on Industrial Electronics, vol. 56, no. 5, pp. 1801-1812, 2009, doi: 10.1109/TIE.2008.2010110.
- J. Park, B. Park, J. Lee, Y. Ryu, E. Park, and S. Kwon, "Optimum frequency of high Q-factor resonator for magnetic resonance coupling," in 2011 41st European Microwave Conference, 10-13 Oct. 2011 2011, pp. 61-63, doi: 10.23919/EuMC.2011.6101706.
- P. Raval, D. Kacprzak, and A. P. Hu, "A wireless power transfer system for low power electronics charging applications," in 2011 6th IEEE Conference on Industrial Electronics and Applications, 21-23 June 2011 2011, pp. 520-525, doi: 10.1109/ICIEA.2011.5975641.
- T. Beh, M. Kato, T. Imura, and Y. Hori, "Wireless power transfer system via magnetic resonant coupling at fixed resonance frequency -power transfer system based on impedance matching-," World Electric Vehicle Journal, vol. 4, pp. 744-753, 2011.
- C. Li, H. Zhang, and X. Jiang, "Parameters optimization for magnetic resonance coupling wireless power transmission," ScientificWorldJournal, vol. 2014, p. 321203, 2014, doi: 10.1155/2014/321203.
- N. Y. Kim et al., "Automated adaptive frequency tracking system for efficient mid-range wireless power transfer via magnetic resonanc coupling," in Microwave Conference (EuMC), 2012 42nd European, Oct. 29 2012-Nov. 1 2012 2012, pp. 221-224.
- O. Jonah, S. V. Georgakopoulos, and M. M. Tentzeris, "Optimal Design Parameters for Wireless Power Transfer by Resonance Magnetic," IEEE Antennas and Wireless Propagation Letters, vol. 11, pp. 1390-1393, 2012, doi: 10.1109/LAWP.2012.2228459.
- S. Y. R. Hui, W. Zhong, and C. K. Lee, "A Critical Review of Recent Progress in Mid-Range Wireless Power Transfer," IEEE Transactions on Power Electronics, vol. 29, no. 9, pp. 4500-4511, 2014, doi: 10.1109/TPEL.2013.2249670.
- B. Waters, A. Sample, and J. Smith, "Adaptive impedance matching for magnetically coupled resonators," PIERS Proceedings, pp. 694-701, 2012.
- Buja, M. Bertoluzzo, and K. N. Mude, "Design and Experimentation of WPT Charger for Electric City Car," IEEE Transactions on Industrial Electronics, vol. 62, no. 12, pp. 7436-7447, 2015, doi: 10.1109/tie.2015.2455524.
- Y. Lim, H. Tang, S. Lim, and J. Park, "An Adaptive Impedance-Matching Network Based on a Novel Capacitor Matrix for Wireless Power Transfer," IEEE Transactions on Power Electronics, vol. 29, no. 8, pp. 4403-4413, 2014, doi: 10.1109/tpel.2013.2292596.
- A. Karalis, J. D. Joannopoulos, and M. Soljačić, "Efficient wireless non-radiative mid-range energy transfer," Annals of Physics, vol. 323, no. 1, pp. 34-48, 2008, doi: 10.1016/j.aop.2007.04.017.
- B. L. Cannon, J. F. Hoburg, D. D. Stancil, and S. C. Goldstein, "Magnetic Resonant Coupling As a Potential Means for Wireless Power Transfer to Multiple Small Receivers," IEEE Transactions on Power Electronics, vol. 24, no. 7, pp. 1819-1825, 2009, doi: 10.1109/TPEL.2009.2017195.
- W.-S. L. H.-L. L. K.-S. O. J.-W. Yu;, "Switchable Distance-Based Impedance Matching Networks for a Tunable HF System," Progress In Electromagnetics Research, vol. 128, pp. 19-34, 2012.
- K. Aditya, M. Youssef, and S. S. Williamson, "Design considerations to obtain a high Şekil of merit in circular archimedean spiral coils for EV battery charging applications," in Industrial Electronics Society, IECON 2015 - 41st Annual Conference of the IEEE, 9-12 Nov. 2015 2015, pp. 005396-005401, doi: 10.1109/IECON.2015.7392949.
- S. Chopra and P. Bauer, "Analysis and design considerations for a contactless power transfer system," in 2011 IEEE 33rd International Telecommunications Energy Conference (INTELEC), 9-13 Oct. 2011 2011, pp. 1-6, doi: 10.1109/INTLEC.2011.6099774.
- S. Babic, S. Salon, and C. Akyel, "The mutual inductance of two thin coaxial disk coils in air," IEEE Transactions on Magnetics, vol. 40, no. 2, pp. 822-825, 2004, doi: 10.1109/TMAG.2004.824810.
- J. C. Maxwell, A Treatise on Electricity and Magnetism. Oxford Universtiy Press, 1881.
- S. D. Barman, A. W. Reza, N. Kumar, M. E. Karim, and A. B. Munir, "Wireless powering by magnetic resonant coupling: Recent trends in wireless power transfer system and its applications," Renewable and Sustainable Energy Reviews, vol. 51, pp. 1525-1552, 2015, doi: 10.1016/j.rser.2015.07.031.