Araştırma Makalesi
BibTex RIS Kaynak Göster

Grafit Uç Elektrot Yüzeyinde 4,4’-diaminobenzofenon’un Elektropolimerleşmesi ile Hazırlanan Modifiye Elektrot Kullanılarak 2-Nitrofenolün Elektrokimyasal Davranışının İncelenmesi ve Voltametrik Tayini

Yıl 2022, Cilt: 10 Sayı: 1, 15 - 26, 30.03.2022
https://doi.org/10.29109/gujsc.1013085

Öz

Bu çalışmada, 4,4’-diaminobenzofenon (44-DABP) molekülünün grafit kalem uç elektrot (PGE) yüzeyinde elektropolimerleşmesi ile 44-DABP/PGE modifiye elektrodu hazırlanmıştır. Elektropolimerleşme yöntemi ile kaplama işlemi, dönüşümlü voltametri (CV) yöntemi kullanılarak 1×10-4 molL-1 44-DABP çözeltisi içerisinde, 10 çevrim sayısı ile -1,5 V ile +1,5 V arasında 0,1 Vs-1 tarama hızıyla potansiyel taraması yapılarak gerçekleştirilmiştir. Hazırlanan 44-DABP/PGE elektrodu CV ve elektrokimyasal impedans spektroskopisi (EIS) teknikleri kullanılarak elektrokimyasal yöntemlerle karakterize edilmiştir. Ayrıca, 44-DABP/PGE yüzeyinde 2-nitrofenolün (2-NP) elektrokimyasal davranışı CV ve diferansiyel puls voltametrisi (DPV) teknikleri kullanılarak incelenmiş ve ardından DPV tekniği ile voltametrik tayini gerçekleştirildi. 44-DABP/PGE elektrodu ile 2-NP tayini için uygun olan destek elektrolit ve pH gibi optimum çalışma şartları belirlendi. Optimum şartlarda, PGE elektrot yüzeyinin 44-DABP filmi ile modifiye edilmesiyle, 2-NP’nin indirgenme pikinin akım değerinde yaklaşık 20 kat artış olduğu belirlendi. 44-DABP/PGE modifiye elektrot ile 2-NP için çalışma aralığı 0,75–15 µM ve gözlenebilme sınırı (LOD) 0,51 µM olarak belirlendi. 44-DABP/PGE elektrodunun 2-NP tayininde iyi bir tekrarlanabilirliğe sahip olduğu tespit edildi. Son olarak modifiye elektrotla, musluk suyunda standart ekleme yöntemi kullanarak iyi bir geri kazanım ve düşük bağıl standart sapma (BSS) değerleri ile 2-NP tayini başarıyla gerçekleştirilmiştir.

Destekleyen Kurum

Gazi Üniversitesi Bilimsel Araştırma Projeleri Birimi

Proje Numarası

65-2020/01

Teşekkür

Bu çalışma, Gazi Üniversitesi Araştırma Projesi Birimi (Proje No: 65/2020‐01) tarafından desteklenmiştir. Katkılarından dolayı Gazi Üniversitesi Bilimsel Araştırma Projeleri Birimi’ne teşekkürlerimizi sunarız.

Kaynakça

  • [1] Tabanlıgil Calam T., Electrochemical Behavior and Voltammetric Determination of 2-Nitrophenol on Glassy Carbon Electrode Surface Modified with 1-Amino-2-Naphthol-4-Sulphonic Acid, Engineering Perspective, 1(1), (2021) 1-5. doi: 10.29228/sciperspective.48525
  • [2] Baysal G., Uzun D., Hasdemir, E., The fabrication of a new modified pencil graphite electrode for the electrocatalytic reduction of 2-nitrophenol in water samples, Journal of Electroanalytical Chemistry, 860, (2020), 113893.
  • [3] Aksu Z., Yener J., Investigation of the biosorption of phenol and monochlorinated phenols on the dried activated sludge, Process Biochemistry, 33(6), (1998), 649-655.
  • [4] Asadpour-Zeynali K., Najafi-Marandi P., Bismuth modified disposable pencil-lead electrode for simultaneous determination of 2-nitrophenol and 4-nitrophenol by net analyte signal standard addition method, Electroanalysis, 23(9), (2011), 2241-2247.
  • [5] U.S. Environmental Protection Agency, Health and Environmental Effects, Ambient Water Quality Criteria for Nitrophenols. EPA 440/5-80-063, Washington, DC, 1980.
  • [6] Thompson M.J., Ballinger L.N., Cross S.E., Roberts M.S., High-performance liquid chromatographic determination of phenol, 4-nitrophenol, β-naphthol and a number of their glucuronide and sulphate conjugates in organ perfusate, J Chromatogr B Biomed Appl, 677 (1996), 117–122.
  • [7] Hofmann D., Hartmann F., Herrmann H., Analysis of nitrophenols in cloud water with a miniaturized lightphase rotary perforator and HPLC-MS, Anal. Bioanal. Chem., 391, (2008), 161–169. [8] Xuan C.S., Wang Z.Y., Song J.L., Spectrophotometric Determination of Some Antibacterial Drugs Using p- Nitrophenol, Analytical Letters, 31(7), (2006), 1185-1195.
  • [9] Niazi A., Yazdanipour A., Spectrophotometric simultaneous determination of nitrophenol isomers by orthogonal signal correction and partial least squares, J. Hazard. Mater., 146, (2007), 421–427.
  • [10] Zhang W., Wilson C.R., Indirect fluorescent determination of selected nitro-aromatic and pharmaceutical compounds via UV-photolysis of 2-phenylbenzimidazole-5-sulfonate, Talanta, 74, (2008), 1400–1407.
  • [11] Guo X., Wang Z. Zhou S., The separation and determination of nitrophenol isomers by highperformance capillary zone electrophoresis, Talanta, 64, (2004), 135–139.
  • [12] Padilla-S´anchez, J.A., Plaza-Bolanos P., Romero-Gonz´alez R., Garrido-Frenich A., Vidal J.L.M., Application of a quick, easy, cheap, effective, rugged and safe-based method for the simultaneous extraction of chlorophenols, alkylphenols, nitrophenols and cresols in agricultural soils, analyzed by using gas chromatography–triple quadrupole-mass spectrometry/mass spectrometry, J. Chromatogr. A, 1217, (2010), 5724–5731.
  • [13] Hernández L., Hernández P., Vicente J., Voltammetric determination of methyl parathion, ortho, meta and para nitrophenol with a carbon paste electrode modified with C 18, Fresenius' Journal of Analytical Chemistry, 345 (11), (1993), 712-715.
  • [14] Rodriguez I.N., Zamora M.B., Salvador J.M.B., Leyva J.A.M., Hernandez-Artiga M.P., de Cisneros, J.L.H.H., Voltammetric determination of 2-nitrophenol at a bentonite-modified carbon paste electrode, Microchimica Acta, 126 (1), (1997), 87-92.
  • [15] Rodríguez I.N., Leyva J.A.M., Hidalgo J., de Cisneros H., Use of a carbon paste modified electrode for the determination of 2-nitrophenol in a flow system by differential pulse voltammetry, Analytica chimica acta, 344 (3), (1997), 167-173.
  • [16] Calam T.T., Voltammetric determination and electrochemical behavior of vanillin based on 1H-1, 2, 4-triazole-3-thiol polymer film modified gold electrode, Food Chemistry, 328, (2020), 127098. Doi: 10.1016/j.foodchem.2020.127098
  • [17] Tabanlıgil Calam T., Yılmaz, E.B., Electrochemical determination of 8-hydroxyquinoline in a cosmetic product on a glassy carbon electrode modified with 1-amino-2-naphthol-4-sulphonic acid, Instrumentation Science & Technology, 49(1), (2021), 1-20. Doi: 10.1080/10739149.2020.1765175
  • [18] Gorla F.A., Duarte E.H., Sartori E.R., Tarley C.R.T., Electrochemical study for the simultaneous determination of phenolic compounds and emerging pollutant using an electroanalytical sensing system based on carbon nanotubes/surfactant and multivariate approach in the optimization, Microchemical Journal, 124, (2015), 65–75. doi: 10.1016/J.MICROC.2015.07.021.
  • [19] Calam T.T., Uzun D., Rapid and Selective Determination of Vanillin in the Presence of Caffeine, its Electrochemical Behavior on an Au Electrode Electropolymerized with 3‐amino‐1, 2, 4‐triazole‐5‐thiol, Electroanalysis, 31(12), (2019), 2347-2358.
  • [20] Calam T.T. Investigation of the electrochemical behavior of phenol using 1H-1, 2, 4-triazole-3-thiol modified gold electrode and its voltammetric determination, Journal of the Faculty of Engineering and Architecture of Gazi University, 35(2), (2020), 835-844.
  • [21] Uzun D., Determination of paracetamol based on 3‐amino‐4H‐1,2,4‐triazole coated glassy carbon surface in pharmaceutical sample, Electroanalysis, 33(7), (2021), 1699-1706. Doi: 10.1002/elan.202100002
  • [22] Saadi Ali S., Abdullah AA., Talay Pınar P., Yardım Y., Şentürk Z., Simultaneous voltammetric determination of vanillin and caffeine in food products using an anodically pretreated boron- doped diamond electrode: Its comparison with HPLC-DAD, Talanta 170, 384–391, (2017).
  • [23] Talay Pınar P., Yardım Y. (2019). Katyonik Surfaktan Varlığında Kalem Grafit Elektrot Yüzeyinde Epirubisin’in Sıyırma Voltametrisi ile Miktar Tayini. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 20(1), (2020), 19-29. Doi: 10.35414/akufemubid.621530.
  • [24] Calam T.T., A modified pencil graphite electrode with 2-thiobarbituric acid for the efficient and cheap voltammetric sensing of 4-aminophenol in water samples and child syrup sample, Journal of Food Composition and Analysis, 98, (2021), 103809. Doi: 10.1016/j.jfca.2021.103809
  • [25] Svancara I., Vytras K., Kalcher K., Walcarius K., Wang J., Carbon Paste Electrodes in Facts, Numbers, and Notes: A Review on the Occasion of the 50-Years Jubilee of Carbon Paste in Electrochemistry and Electroanalysis, 21(1), (2008), 7-28. Doi: 10.1002/elan.200804340.
  • [26] Rahman M.M., Alam M.M., Asiri Abdullah M., 2-Nitrophenol sensor-based wet-chemically prepared binary doped Co3O4/Al2O3 nanosheets by an electrochemical approach, RSC Adv., 8, (2017), 960-970. Doi: 10.1039/c7ra10866d.
  • [27] Tabanlıgil Calam T., Analytical application of the poly (1H-1, 2, 4-triazole-3-thiol) modified gold electrode for high-sensitive voltammetric determination of catechol in tap and lake water samples, International Journal of Environmental Analytical Chemistry, 99 (13), (2019), 1298-1312.
  • [28] Tatli F., Tabanlıgil Calam T., Uzun D., Hasdemir E., The determination of uric acid in the presence of ascorbic acid and dopamine using [(1H1,2,4-triazole-3-ylimino)methyl]naphthalene-2-ol modified platinum electrode, Journal of the Faculty of Engineering and Architecture of Gazi University, 35 (4), (2020), 2013-2022. Doi: 10.17341/gazimmfd.525552
  • [29] Chan D., Barsan, M.M., Korpan, Y., Brett, C.M., L-lactate selective impedimetric bienzymatic biosensor based on lactate dehydrogenase and pyruvate oxidase. Electrochimica Acta, 231, (2017), 209-215.
  • [30] Calam T.T., Selective and sensitive determination of paracetamol and levodopa with using electropolymerized 3,5‐diamino‐1,2,4‐triazole film on glassy carbon electrode. Electroanalysis, 33 (4), (2021), 1049-1062.

Investigation of Electrochemical Behavior and Voltammetric Determination of 2-Nitrophenol Using Modified Electrode Prepared by Electropolymerization of 4,4'-Diaminobenzophenone on Pencil Graphite Electrode Surface

Yıl 2022, Cilt: 10 Sayı: 1, 15 - 26, 30.03.2022
https://doi.org/10.29109/gujsc.1013085

Öz

In this study, a 44-DABP/PGE modified electrode was prepared by coating graphite pencil electrode (PGE) surface with 4,4'-diaminobenzophenone (44-DABP) molecule. The coating process was carried out using the cyclic voltammetry (CV) method, in 1×10-4 mol L-1 44-DABP solution, with the number of 10 cycles between -1.5 V and +1.5 V with 0.1 Vs-1 scan rate. The prepared 44-DABP/PGE electrode was characterized by electrochemical methods using CV and electrochemical impedance spectroscopy (EIS) techniques. In addition, the electrochemical behavior of 2-nitrophenol (2-NP) on the 44-DABP/PGE surface was investigated using CV and differential pulse voltammetry (DPV) techniques, and then the voltammetric determination was performed with the DPV technique. With the 44-DABP/PGE electrode, optimum conditions such as supporting electrolyte and pH suitable for 2-NP determination were determined. Under optimum conditions, it was determined that the current value of the reduction peak of 2-NP increased approximately 20 times by modifying the PGE electrode surface with 44-DABP. The working range for 2-NP with 44-DABP/PGE modified electrode was found as 0.75–15 µM and the detection limit (LOD) was 0.51 µM. It has been found that the 44-DABP/PGE electrode has good repeatability for the 2-NP determination. The determination of 2-NP in tap water by using the modified electrode has been successfully performed using the standard addition method with a good recovery and low relative standard deviation.

Proje Numarası

65-2020/01

Kaynakça

  • [1] Tabanlıgil Calam T., Electrochemical Behavior and Voltammetric Determination of 2-Nitrophenol on Glassy Carbon Electrode Surface Modified with 1-Amino-2-Naphthol-4-Sulphonic Acid, Engineering Perspective, 1(1), (2021) 1-5. doi: 10.29228/sciperspective.48525
  • [2] Baysal G., Uzun D., Hasdemir, E., The fabrication of a new modified pencil graphite electrode for the electrocatalytic reduction of 2-nitrophenol in water samples, Journal of Electroanalytical Chemistry, 860, (2020), 113893.
  • [3] Aksu Z., Yener J., Investigation of the biosorption of phenol and monochlorinated phenols on the dried activated sludge, Process Biochemistry, 33(6), (1998), 649-655.
  • [4] Asadpour-Zeynali K., Najafi-Marandi P., Bismuth modified disposable pencil-lead electrode for simultaneous determination of 2-nitrophenol and 4-nitrophenol by net analyte signal standard addition method, Electroanalysis, 23(9), (2011), 2241-2247.
  • [5] U.S. Environmental Protection Agency, Health and Environmental Effects, Ambient Water Quality Criteria for Nitrophenols. EPA 440/5-80-063, Washington, DC, 1980.
  • [6] Thompson M.J., Ballinger L.N., Cross S.E., Roberts M.S., High-performance liquid chromatographic determination of phenol, 4-nitrophenol, β-naphthol and a number of their glucuronide and sulphate conjugates in organ perfusate, J Chromatogr B Biomed Appl, 677 (1996), 117–122.
  • [7] Hofmann D., Hartmann F., Herrmann H., Analysis of nitrophenols in cloud water with a miniaturized lightphase rotary perforator and HPLC-MS, Anal. Bioanal. Chem., 391, (2008), 161–169. [8] Xuan C.S., Wang Z.Y., Song J.L., Spectrophotometric Determination of Some Antibacterial Drugs Using p- Nitrophenol, Analytical Letters, 31(7), (2006), 1185-1195.
  • [9] Niazi A., Yazdanipour A., Spectrophotometric simultaneous determination of nitrophenol isomers by orthogonal signal correction and partial least squares, J. Hazard. Mater., 146, (2007), 421–427.
  • [10] Zhang W., Wilson C.R., Indirect fluorescent determination of selected nitro-aromatic and pharmaceutical compounds via UV-photolysis of 2-phenylbenzimidazole-5-sulfonate, Talanta, 74, (2008), 1400–1407.
  • [11] Guo X., Wang Z. Zhou S., The separation and determination of nitrophenol isomers by highperformance capillary zone electrophoresis, Talanta, 64, (2004), 135–139.
  • [12] Padilla-S´anchez, J.A., Plaza-Bolanos P., Romero-Gonz´alez R., Garrido-Frenich A., Vidal J.L.M., Application of a quick, easy, cheap, effective, rugged and safe-based method for the simultaneous extraction of chlorophenols, alkylphenols, nitrophenols and cresols in agricultural soils, analyzed by using gas chromatography–triple quadrupole-mass spectrometry/mass spectrometry, J. Chromatogr. A, 1217, (2010), 5724–5731.
  • [13] Hernández L., Hernández P., Vicente J., Voltammetric determination of methyl parathion, ortho, meta and para nitrophenol with a carbon paste electrode modified with C 18, Fresenius' Journal of Analytical Chemistry, 345 (11), (1993), 712-715.
  • [14] Rodriguez I.N., Zamora M.B., Salvador J.M.B., Leyva J.A.M., Hernandez-Artiga M.P., de Cisneros, J.L.H.H., Voltammetric determination of 2-nitrophenol at a bentonite-modified carbon paste electrode, Microchimica Acta, 126 (1), (1997), 87-92.
  • [15] Rodríguez I.N., Leyva J.A.M., Hidalgo J., de Cisneros H., Use of a carbon paste modified electrode for the determination of 2-nitrophenol in a flow system by differential pulse voltammetry, Analytica chimica acta, 344 (3), (1997), 167-173.
  • [16] Calam T.T., Voltammetric determination and electrochemical behavior of vanillin based on 1H-1, 2, 4-triazole-3-thiol polymer film modified gold electrode, Food Chemistry, 328, (2020), 127098. Doi: 10.1016/j.foodchem.2020.127098
  • [17] Tabanlıgil Calam T., Yılmaz, E.B., Electrochemical determination of 8-hydroxyquinoline in a cosmetic product on a glassy carbon electrode modified with 1-amino-2-naphthol-4-sulphonic acid, Instrumentation Science & Technology, 49(1), (2021), 1-20. Doi: 10.1080/10739149.2020.1765175
  • [18] Gorla F.A., Duarte E.H., Sartori E.R., Tarley C.R.T., Electrochemical study for the simultaneous determination of phenolic compounds and emerging pollutant using an electroanalytical sensing system based on carbon nanotubes/surfactant and multivariate approach in the optimization, Microchemical Journal, 124, (2015), 65–75. doi: 10.1016/J.MICROC.2015.07.021.
  • [19] Calam T.T., Uzun D., Rapid and Selective Determination of Vanillin in the Presence of Caffeine, its Electrochemical Behavior on an Au Electrode Electropolymerized with 3‐amino‐1, 2, 4‐triazole‐5‐thiol, Electroanalysis, 31(12), (2019), 2347-2358.
  • [20] Calam T.T. Investigation of the electrochemical behavior of phenol using 1H-1, 2, 4-triazole-3-thiol modified gold electrode and its voltammetric determination, Journal of the Faculty of Engineering and Architecture of Gazi University, 35(2), (2020), 835-844.
  • [21] Uzun D., Determination of paracetamol based on 3‐amino‐4H‐1,2,4‐triazole coated glassy carbon surface in pharmaceutical sample, Electroanalysis, 33(7), (2021), 1699-1706. Doi: 10.1002/elan.202100002
  • [22] Saadi Ali S., Abdullah AA., Talay Pınar P., Yardım Y., Şentürk Z., Simultaneous voltammetric determination of vanillin and caffeine in food products using an anodically pretreated boron- doped diamond electrode: Its comparison with HPLC-DAD, Talanta 170, 384–391, (2017).
  • [23] Talay Pınar P., Yardım Y. (2019). Katyonik Surfaktan Varlığında Kalem Grafit Elektrot Yüzeyinde Epirubisin’in Sıyırma Voltametrisi ile Miktar Tayini. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 20(1), (2020), 19-29. Doi: 10.35414/akufemubid.621530.
  • [24] Calam T.T., A modified pencil graphite electrode with 2-thiobarbituric acid for the efficient and cheap voltammetric sensing of 4-aminophenol in water samples and child syrup sample, Journal of Food Composition and Analysis, 98, (2021), 103809. Doi: 10.1016/j.jfca.2021.103809
  • [25] Svancara I., Vytras K., Kalcher K., Walcarius K., Wang J., Carbon Paste Electrodes in Facts, Numbers, and Notes: A Review on the Occasion of the 50-Years Jubilee of Carbon Paste in Electrochemistry and Electroanalysis, 21(1), (2008), 7-28. Doi: 10.1002/elan.200804340.
  • [26] Rahman M.M., Alam M.M., Asiri Abdullah M., 2-Nitrophenol sensor-based wet-chemically prepared binary doped Co3O4/Al2O3 nanosheets by an electrochemical approach, RSC Adv., 8, (2017), 960-970. Doi: 10.1039/c7ra10866d.
  • [27] Tabanlıgil Calam T., Analytical application of the poly (1H-1, 2, 4-triazole-3-thiol) modified gold electrode for high-sensitive voltammetric determination of catechol in tap and lake water samples, International Journal of Environmental Analytical Chemistry, 99 (13), (2019), 1298-1312.
  • [28] Tatli F., Tabanlıgil Calam T., Uzun D., Hasdemir E., The determination of uric acid in the presence of ascorbic acid and dopamine using [(1H1,2,4-triazole-3-ylimino)methyl]naphthalene-2-ol modified platinum electrode, Journal of the Faculty of Engineering and Architecture of Gazi University, 35 (4), (2020), 2013-2022. Doi: 10.17341/gazimmfd.525552
  • [29] Chan D., Barsan, M.M., Korpan, Y., Brett, C.M., L-lactate selective impedimetric bienzymatic biosensor based on lactate dehydrogenase and pyruvate oxidase. Electrochimica Acta, 231, (2017), 209-215.
  • [30] Calam T.T., Selective and sensitive determination of paracetamol and levodopa with using electropolymerized 3,5‐diamino‐1,2,4‐triazole film on glassy carbon electrode. Electroanalysis, 33 (4), (2021), 1049-1062.
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Tasarım ve Teknoloji
Yazarlar

Tuğba Tabanlıgil Calam 0000-0002-3712-7713

Süleyman Çalışkan 0000-0003-2006-1276

Gülşen Taşkın Çakıcı 0000-0001-7564-9777

Proje Numarası 65-2020/01
Erken Görünüm Tarihi 22 Mart 2022
Yayımlanma Tarihi 30 Mart 2022
Gönderilme Tarihi 21 Ekim 2021
Yayımlandığı Sayı Yıl 2022 Cilt: 10 Sayı: 1

Kaynak Göster

APA Tabanlıgil Calam, T., Çalışkan, S., & Taşkın Çakıcı, G. (2022). Grafit Uç Elektrot Yüzeyinde 4,4’-diaminobenzofenon’un Elektropolimerleşmesi ile Hazırlanan Modifiye Elektrot Kullanılarak 2-Nitrofenolün Elektrokimyasal Davranışının İncelenmesi ve Voltametrik Tayini. Gazi University Journal of Science Part C: Design and Technology, 10(1), 15-26. https://doi.org/10.29109/gujsc.1013085

                                     16168      16167     16166     21432        logo.png


    e-ISSN:2147-9526