BibTex RIS Kaynak Göster

-

Yıl 2015, Cilt: 3 Sayı: 3, 513 - 523, 01.06.2015

Öz

University course timetabling problem, which occurs every education period, is a NP-Complete problem. There are several constraints that must be satisfied and purposes that are wanted to be reached. In this paper, a model in literature for university course timetabling is readjusted and it has been turned into multiobjective mixed integer mathematical model. Fuzzy AHP method is utilized to determine the objective function coefficient in the model. The efficiency of the model is tested on the Department of Industrial Engineering at Gazi University. As a result, an optimal schedule that courses are assigned according to desired objective is obtained

Kaynakça

  • . Köçken, H. G., R. Özdemir ve M. Ahlatcıoğlu (2014). "Üniversite ders zaman çizelgeleme problemi için ikili tamsayılı bir model ve bir uygulama." Journal of the School of Business Administration, Istanbul University 43(1): 28-54.
  • . Daskalaki, S., T. Birbas ve E. Housos (2004). "An integer programming formulation for a case study in university timetabling." European Journal of Operational Research 153(1): 117-135.
  • . Rudová, H., T. Müller ve K. Murray (2011). "Complex university course timetabling." Journal of Scheduling 14(2): 187-207.
  • . Shue, L.-Y., P.-C. Lin ve C.-Y. Tsai (2009). Constraint Programming Approach for a University Timetabling Decision Support System with Hard and Soft Constraints. Opportunities and Challenges for Next-Generation Applied Intelligence, Springer: 93-98.
  • . Mahiba, A. A. ve C. A. D. Durai (2012). "Genetic Algorithm with Search Bank Strategies for University Course Timetabling Problem." Procedia Engineering 38: 253-263.
  • . Gunawan, A., K. M. Ng ve K. L. Poh (2012). "A hybridized Lagrangian relaxation and simulated annealing method for the course timetabling problem." Computers & Operations Research 39(12): 3074-3088.
  • . Schimmelpfeng, K. ve S. Helber (2007). "Application of a real-world university-course timetabling model solved by integer programming." Or Spectrum 29(4): 783-803.
  • . Ismayilova, N. A., M. SağIr ve R. N. Gasimov (2007). "A multiobjective faculty–course–time slot assignment problem with preferences." Mathematical and Computer Modelling 46(7): 1017-1029.
  • . Kohshori, M. S., M. S. Abadeh ve H. Sajedi (2011). A fuzzy genetic algorithm with local search for university course timetabling. Data Mining and Intelligent Information Technology Applications (ICMiA), 2011 3rd International Conference on, IEEE.
  • . Golabpour, A., A. Farahi, H. Beigi, H. Shirazi ve A. Kootiani (2008). A fuzzy solution based on Memetic algorithms for timetabling. MultiMedia and Information Technology, 2008. MMIT'08. International Conference on, IEEE.
  • . Rachmawati, L. ve D. Srinivasan (2005). A hybrid fuzzy evolutionary algorithm for a multi-objective resource allocation problem. Hybrid Intelligent Systems, 2005. HIS'05. Fifth International Conference on, IEEE.
  • . Chaudhuri, A. ve K. De (2010). "Fuzzy genetic heuristic for university course timetable problem." International journal of Advance Soft Computing Application 2(1).
  • . Asmuni, H., E. K. Burke ve J. M. Garibaldi (2005). Fuzzy multiple heuristic ordering for course timetabling. Proceedings of the 5th United Kingdom workshop on computational intelligence (UKCI 2005), Citeseer.
  • . Özbek, A. ve T. Eren "Çok Ölçütlü Karar Verme Teknikleri Ġle Hizmet Sağlayıcı Seçimi." Akademik Bakış Dergisi(36): 1-22.
  • . Ayhan, M. B. (2013). "A Fuzzy AHP Approach for Supplier Selection Problem: A Case Study in a Gear Motor Company." arXiv preprint arXiv:1311.2886.
  • . Göksu, A. ve İ. Güngör (2008). "Bulanık Analitik Hiyerarşik Proses Ve Üniversite Tercih Sıralamasında Uygulanması." Suleyman Demirel University Journal of Faculty of Economics & Administrative Sciences 13(3).

ÜNİVERSİTE DERS ÇİZELGELEME PROBLEMİNİN BULANIK AHP VE ÇOK AMAÇLI KARIŞIK TAM SAYILI MATEMATİKSEL MODELLE ÇÖZÜMÜ

Yıl 2015, Cilt: 3 Sayı: 3, 513 - 523, 01.06.2015

Öz

Üniversite ders çizelgeleme problemi, üniversitelerin her eğitim dönemi başında karşılaştığı NP-Tam bir problemdir. Problemde karşılanması gereken birçok kısıt, ulaşılmak istenen birçok amaç vardır. Bu çalışmada üniversite ders çizelgeleme problemi için literatürde var olan bir model, uygulama yapılan eğitim kurumunun kısıtları dikkatle alınarak yeniden düzenlenmiş ve karışık tam sayılı matematiksel model haline getirilmiştir. Modeldeki amaç fonksiyon katsayılarının belirlenmesinde Bulanık AHP yönteminden yararlanılmıştır. Model, Gazi Üniversitesi Endüstri Mühendisliği Bölümü üzerinde test edilmiş ve sonuç olarak derslerin istenen amaçlar doğrultusunda atandığı optimal bir çizelge elde edilmiştir.   

Kaynakça

  • . Köçken, H. G., R. Özdemir ve M. Ahlatcıoğlu (2014). "Üniversite ders zaman çizelgeleme problemi için ikili tamsayılı bir model ve bir uygulama." Journal of the School of Business Administration, Istanbul University 43(1): 28-54.
  • . Daskalaki, S., T. Birbas ve E. Housos (2004). "An integer programming formulation for a case study in university timetabling." European Journal of Operational Research 153(1): 117-135.
  • . Rudová, H., T. Müller ve K. Murray (2011). "Complex university course timetabling." Journal of Scheduling 14(2): 187-207.
  • . Shue, L.-Y., P.-C. Lin ve C.-Y. Tsai (2009). Constraint Programming Approach for a University Timetabling Decision Support System with Hard and Soft Constraints. Opportunities and Challenges for Next-Generation Applied Intelligence, Springer: 93-98.
  • . Mahiba, A. A. ve C. A. D. Durai (2012). "Genetic Algorithm with Search Bank Strategies for University Course Timetabling Problem." Procedia Engineering 38: 253-263.
  • . Gunawan, A., K. M. Ng ve K. L. Poh (2012). "A hybridized Lagrangian relaxation and simulated annealing method for the course timetabling problem." Computers & Operations Research 39(12): 3074-3088.
  • . Schimmelpfeng, K. ve S. Helber (2007). "Application of a real-world university-course timetabling model solved by integer programming." Or Spectrum 29(4): 783-803.
  • . Ismayilova, N. A., M. SağIr ve R. N. Gasimov (2007). "A multiobjective faculty–course–time slot assignment problem with preferences." Mathematical and Computer Modelling 46(7): 1017-1029.
  • . Kohshori, M. S., M. S. Abadeh ve H. Sajedi (2011). A fuzzy genetic algorithm with local search for university course timetabling. Data Mining and Intelligent Information Technology Applications (ICMiA), 2011 3rd International Conference on, IEEE.
  • . Golabpour, A., A. Farahi, H. Beigi, H. Shirazi ve A. Kootiani (2008). A fuzzy solution based on Memetic algorithms for timetabling. MultiMedia and Information Technology, 2008. MMIT'08. International Conference on, IEEE.
  • . Rachmawati, L. ve D. Srinivasan (2005). A hybrid fuzzy evolutionary algorithm for a multi-objective resource allocation problem. Hybrid Intelligent Systems, 2005. HIS'05. Fifth International Conference on, IEEE.
  • . Chaudhuri, A. ve K. De (2010). "Fuzzy genetic heuristic for university course timetable problem." International journal of Advance Soft Computing Application 2(1).
  • . Asmuni, H., E. K. Burke ve J. M. Garibaldi (2005). Fuzzy multiple heuristic ordering for course timetabling. Proceedings of the 5th United Kingdom workshop on computational intelligence (UKCI 2005), Citeseer.
  • . Özbek, A. ve T. Eren "Çok Ölçütlü Karar Verme Teknikleri Ġle Hizmet Sağlayıcı Seçimi." Akademik Bakış Dergisi(36): 1-22.
  • . Ayhan, M. B. (2013). "A Fuzzy AHP Approach for Supplier Selection Problem: A Case Study in a Gear Motor Company." arXiv preprint arXiv:1311.2886.
  • . Göksu, A. ve İ. Güngör (2008). "Bulanık Analitik Hiyerarşik Proses Ve Üniversite Tercih Sıralamasında Uygulanması." Suleyman Demirel University Journal of Faculty of Economics & Administrative Sciences 13(3).
Toplam 16 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Tasarım ve Teknoloji
Yazarlar

Ukbe Uçar

Selçuk İşleyen

Yunus Demir

Yayımlanma Tarihi 1 Haziran 2015
Gönderilme Tarihi 1 Haziran 2015
Yayımlandığı Sayı Yıl 2015 Cilt: 3 Sayı: 3

Kaynak Göster

APA Uçar, U., İşleyen, S., & Demir, Y. (2015). ÜNİVERSİTE DERS ÇİZELGELEME PROBLEMİNİN BULANIK AHP VE ÇOK AMAÇLI KARIŞIK TAM SAYILI MATEMATİKSEL MODELLE ÇÖZÜMÜ. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 3(3), 513-523.

                                     16168      16167     16166     21432        logo.png   


    e-ISSN:2147-9526