Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2023, Cilt: 11 Sayı: 3, 867 - 884, 27.09.2023
https://doi.org/10.29109/gujsc.1348409
Bu makale için 31 Aralık 2024 tarihinde bir düzeltme yayımlandı. https://dergipark.org.tr/tr/pub/gujsc/issue/89546/1610622

Öz

Kaynakça

  • [1] Salami, H., Uy, A., Vadapalli, A., Grob, C., Dwivedi, V., & Adomaitis, R. A., Atomic layer deposition of ultrathin indium oxide and indium tin oxide films using a trimethylindium, tetrakis(dimethylamino)tin, and ozone precursor system, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 37(010905), (2019).
  • [2] Frank, G., and Köstlin, H., Electrical properties and defect model of tin-doped indium oxide layers, Applied Physics A Solids and Surfaces, 27(4) (197–206), (1982).
  • [3] Choi, Y. J., and Park, H. H., A simple approach to the fabrication of fluorine-doped zinc oxide thin films by atomic layer deposition at low temperatures and an investigation into the growth mode, Journal of Materials Chemistry C, 2(1) (98–108), (2014).
  • [4] Khan, S., & Stamate, E., Comparative Study of Aluminum-Doped Zinc Oxide, Gallium-Doped Zinc Oxide and Indium-Doped Tin Oxide Thin Films Deposited by Radio Frequency Magnetron Sputtering, Nanomaterials, 12(9), (2022).
  • [5] Polat Gonullu, M., and Ates, H., An Overview of Atomic Layer Deposition Technique: Synthesis of ZnO, TiO2 and Al2O3 Films, GU J Sci, Part C, 7(3) (649-660), (2019).
  • [6] Florescu, D.I., Mourokh, L.G., Pollak F.H., Look, D.C., Cantwell, G., and Li, X., High spatial resolution thermal conductivity of bulk ZnO (001), Journal of Applied Physics, 91 (890-892), (2002).
  • [7] Ozgur, U., Alivov, I., Liu, C., Teke, A., Reshchikov, M.A., Dogan, S., Avrutin, V., Cho, S.J., and Morkoc, H., A comprehensive review of ZnO materials and devices, Journal of Applied Physics, 98 (041301), (2005).
  • [8] Tuomisto, F., Saarinen, K., Look, D.C., and Farlow, G.C., Physical Review B, 72 (085206), (2005).
  • [9] Mang, A., Reimann, K., and Rübenacke, S., Bandgaps, crystal-field splitting, spin-orbit coupling, and exciton binding energies in ZnO under hydrostatic pressure, Solid State Communications, 94 (4) (251-254), (1995).
  • [10] Reynolds, D.C., Look, D.C., and Jogai, B., Optically Pumped Ultraviolet Lasing From ZnO, Solid State Communications, 99 (12) (873-875), (1996).
  • [11] Molarius, J., Kaitila, J., Pensala, T., Ylilammi, M., Piezoelectric ZnO films by r.f. sputtering, J. Of Matr. SCİ.: MATERİALS İN ELECTRONİCS, 14 (431-435), (2003).
  • [12] Look, D.C., Recent advances in ZnO materials and devices. Mater Sci Eng B., 80 (383-387), (2001). [13] Nause, J. and Nemeth, B., Pressurized melt growth of ZnO boules, Semiconductor Science and TECHNOLOGY, 20(4) (S45-S48), (2005).
  • [14] Klingshirn, C., ZnO: From basics towards applications, Physica Status Solidi (b), 244(9) (3019-3407), (2007).
  • [15] Ellmer, K., Past achievements and future challenges in the development of optically transparent electrodes, Nature Photonics, 6 (809-817), (2012).
  • [16] Pearton, S., and Ren, F., Advances in ZnO-based materials for light emitting diodes, Current Opinion in Chemical Engineering, 3 (51-55), (2014).
  • [17] Hultqvist, A., Aitola, K., Sveinbjörnsson, K., Saki, Z., Larsson, F., Törndahl, T., Johansson, E., Boschloo, G., Edoff, M., Atomic Layer Deposition of Electron Selective SnO x and ZnO Films on Mixed Halide Perovskite: Compatibility and Performance. ACS applied materials & interfaces, 9 (29707-29716), (2017).
  • [18] Carcia, P.F., McLean, R.S., and Reilly, M.H., High-performance ZnO thin-film transistors on gate dielectrics grown by atomic layer deposition, Applied Physics Letters, 88 (123509), (2006).
  • [19] Ye, Z., Xu, H., Liu, T., Liu, N., Wang, Y., Zhang, N., and Liu, Y., Highly Stable Atomic Layer Deposited Zinc Oxide Thin-Film Transistors Incorporating Triple O2 Annealing, IEEE Transactions on Electronic Devices, 64-10 (4114-4122), (2017).
  • [20] Karpina, V., Lazorenko, V., Lashkarev, C., Dobrowolski, V., Kopylova, L., Baturin, V., Pustovoytov, S., Karpenko, A. J., Eremin, S., and Lytvyn, P., Zinc oxide–analogue of GaN with new perspective possibilities, Crystal Research and Technology, 39 (980-992), (2004).
  • [21] Gorla, C., Emanetoglu, N., Liang, S., Mayo, W., Lu, Y., Wraback, M., and Shen, H., Structural, optical, and surface acoustic wave properties of epitaxial ZnO films grown on (0112) sapphire by metalorganic chemical vapor deposition, J. Appl. Phys., 85 (2595-2602), (1999).
  • [22] Jung, S., Park, W., Cheong, H., Yi, G.C., Jang, H., Hong, S., and Joo, T., Time-resolved and time-integrated photoluminescence in ZnO epilayers grown on Al2O3 (0001) by metalorganic vapor phase epitaxy, Applied Physics Letters, 80 (1924), (2002).
  • [23] Zu P., Tang, Z.K, Wang, G.K.L., Kawasaki, M., Ohtomo, A., Koinuma, H., and Segawa, Y., Solid State Communications, 103 (459-463), (1997).
  • [24] Jin, B.J.,Im, S., and Lee, S.Y., Violet and UV luminescence emitted from ZnO thin films grown on sapphire by pulsed laser deposition, Thin Solid Films, 366 (107-110), (2000).
  • [25] Janotti, A., and Van De Walle, C.G., Fundamentals of zinc oxide as a semiconductor, Reports on Progress in Physics, 72 (126501), (2009).
  • [26] Ayoub, I., Kumar, V., Abdolhassani, R., Sehgal, R., Sharma, V., Sehgal, R, Swart, H.C., and Mishra, Y.K., Advances in ZnO manipulation of defects for enhancing their technological potentials, Nanotechnology Reviews, 11 (575-619), (2022).
  • [27] Dutta, S, Chattopadhyay, S., Sarkar, A., Chakrabarti, M., Sanyal, D., and Jana D., Role of defects in tailoring structural, electrical and optical properties of ZnO, Progress in Materials Science, 54 (89-136), (2009).
  • [28] Janotti, A., and Van De Walle, C.G., Oxygen vacancies in ZnO, Applied Physics Letters, 87 (122102), (2005).
  • [29] Janotti, A., and Van de Walle, C.G., New insights into the role of native point defects in ZnO, Journal of Crystal Growth, 287 (58–65), (2006).
  • [30] Janotti, A., and Van de Walle, C.G., Native point defects in ZnO, Phys Rev B., 76 (165202), (2007).
  • [31] Guziewicz, E., Godlewski, M., Krajewski, T.A., Wachnicki, L., Luka, G., Domagala, J.Z., Paszkowicz, W., Kowalski,B.J., Witkowski, B.S., Duzynska, A., and Suchocki, A., Zinc oxide grown by atomic layer deposition - a material for novel 3D electronics, Physica Status Solidi (b) 247 (1611-1615), (2010).
  • [32] Liu, L., Mei, Z., Tang, A., Azarov, A., Kuznetsov, A., Xue, Q., and Du, X., Oxygen vacancies: The origin of n-typeconductivity in ZnO, Physical Review B, 93 (235305), (2016).
  • [33] Halliburton, L.E., Giles, N.C., Garces, N.Y., Luo, M., Xu, C., Bai, L. and Boatner, L.A., Production of native donors in ZnO by annealing at high temperature in Zn vapor, Applied Physics Letters, 87 (172108), (2005).
  • [34] Hagemark, K.I., and Toren, P.E., Determination of Excess Zn in ZnO: The Phase Boundary. Journal of Electrochemical Society, 122 (992), (1975).
  • [35] Tuomisto, F., Saarinen, K., Grasza, K., and Mycielski, A., Observation of Zn vacancies in ZnO grown by chemical vapor transport, Physica Status Solidi (b), 243(4) (794-798), (2006).
  • [36] Guziewicz, E., Krajewski, T.A., Przezdziecka, E., Korona, K.P., Czechowski, N., Klopotowski, L., and Terziyska, P., Zinc Oxide Grown by Atomic Layer Deposition: From Heavily n-Type to p-Type Material, Phys. Status Solidi B, 257 (1900472), (2020).
  • [37] Guziewicz, E., Godlewski, M., Wachnicki, L., Krajewski, T.A., Luka, G., Gieraltowska, S., Jakiela, R., Stonert, A., Lisowski, W., Krawczyk, M., Sobczak, J.W., and Jablonski, A., Semiconductor Science and Technology, 27 (074011), (2012).
  • [38] Guziewicz, E., Kowalik, I.A., Godlewski, M., Kopalko, K., Osinniy, V., Wojcik, A., Yatsunenko, S., Lusakowska, E., Paszkowicz, W., and Guziewicz, M., Extremely low temperature growth of ZnO by atomic layer deposition, Journal of Applied Physics, 103 (033515), (2008).
  • [39] Pung, S., Choy, K., Hou, X., and Shan, C., Preferential growth of ZnO thin films by the atomic layer deposition technique, Nanotechnology, 19 (435609), (2008).
  • [40] Weckman, T., and Laasonen, K., Atomic Layer Deposition of Zinc Oxide: Study on the Water Pulse Reactions from First-Principles, The Journal of Physical Chemistry, 122 (7685-7694), (2018).
  • [41] Fujimura, N., Nishihara, T., Goto, S., Xu, J., and Ito, T., Control of preferred orientation for ZnOx films: control of self-texture, Journal of Crystal Growth, 130 (269-279), (1993). [42] Nguyen, T.,Valle, N., Guillot, J., Bour, J., Adjeroud, N., Fleming, Y., Guennou, M., Audinot, J.N., El Adib, B., Joly, R., Arl, D., Frache, G., and Polesel-Maris, J., Elucidating the growth mechanism of ZnO films by atomic layer deposition with oxygen gas via isotopic tracking, Journal of Materials Chemistry C, 9 (4307-4315), (2021).
  • [43] Lim, J., and Lee, C., Effect of substrate temperature on the microstructure and photoluminescence properties of ZnO thin films prepared by atomic layer deposition, Thin Solid Films, 515 (3335-3338), (2007).
  • [44] Cabral, L., Lopez-Richard, V., Da Silva, J.L.F., Marques, G.E., Lima, M.P., Onofre, Y.J., Teodoro, M.D., and Godoy, M.P.F., Insights into the nature of optically active defects of ZnO, Journal of Luminescence, 227 (117536), (2020).
  • [45] Iqbal, J., Jilani, A., Hassan, P.M.Z., Rafique, S., Jafer, R., and Alghamdi, A.A., ALD grown nanostructured ZnO thin films: Effect of substrate temperature on thickness and energy band gap, Journal of King Saud Universiyt-Science, 28 (347-354), (2016).
  • [46] Gordillo, G., Florez, J.M., and Hernandez, L.C., Preparation and characterization of CdTe thin films deposited by CSS, Solar Energy Materials and Solar Cells, 37 (273-281), (1995).
  • [47] Ameur, S.B., Bel hadjltaief, H., Barhoumi, A., Duponchel, B., Leroy, G., Amlouk, M., and Guermazi, H., Physical investigations and photocatalytic activities on ZnO and SnO2 thin films deposited on flexible polymer substrate, Vacuum, 155 (546-552), (2018).
  • [48] Mishra, S., Przezdziecka, E., Wozniak, W., Adhikari, A., Jakiel, R., Paszkowicz, W., Sulich, A., Ozga, M., Kopalko, K., and Guziewicz, E., Structural Properties of Thin ZnO Films Deposited by ALD under O-Rich and Zn-Rich Growth Conditions and Their Relationship with Electrical Parameters, Materials, 14 (4048), (2021).
  • [49] Jain, S., Shah, J., Negi, N.S., Sharma, C., and Kotnala, R.K., Significance of interface barrier at electrode of hematite hydroelectric cell for generating ecopower by water splitting, International Journal of Energy Research, 44, 14 (11111-11134), (2019).
  • [50] Cho, Y., and Kang, K., and Park, H., Anion-controlled passivation effect of the atomic layer deposited ZnO films by F substitution to O-related defects on the electronic band structure for transparent contact layer of solar cell applications, Solar Energy Materials & Solar Cells, 132 (403-409), (2015).
  • [51] Crist B.V., (1999) Handbook of Monochromatic Xps Spectra, vol. 2, Commercially Pure Binary Oxides, XPS International Inc., Mountain View, California, 94040, USA, (818-827).
  • [52] Galmiz, O., Stupavska, M., Wulff, H., Kersten, H., Brablec, A., Cernak, M., Deposition of Zn-containing films using atmospheric pressure plasma jet, Open Chem., 13 (198-203), (2015).
  • [53] Godlewski, M., Guziewicz, E., Luka, G., Krajewski, T., Lukasiewicz, M., Wachnicki, L., Wachnicka, A., Kopalko, K., and Dalati, A.S., ZnO layers grown by Atomic Layer Deposition: A new material for transparent conductive oxide, Thin Solid Films, 518 (1145-1148), (2009).
  • [54] Chandrasekar, L.B., Nagarajan, S., Karunakaran, M., and Thangadurai, T.D., (2019) Structural, optical and electrical properties of undoped and doped ZnO thin films, 2D Materials, eBook.
  • [55] Laube, J., Nübling, D., Ben, H., Gutsch, S., Hiller, D., and Zacharias, M., Resistivity of atomic layer deposition grown ZnO: The influence of deposition temperature and post-annealing, Thin Solid Films, 603 (377-381), (2016).

Dynamics in between Structural and Electrical Properties of as Grown ZnO Thin Films by Thermal ALD

Yıl 2023, Cilt: 11 Sayı: 3, 867 - 884, 27.09.2023
https://doi.org/10.29109/gujsc.1348409
Bu makale için 31 Aralık 2024 tarihinde bir düzeltme yayımlandı. https://dergipark.org.tr/tr/pub/gujsc/issue/89546/1610622

Öz

The mechanism behind n-type conductivity of undoped ZnO films are not understood well. One and two dimensional defects (grain boundaries, dislocations), and zero dimensional stoichiometric point defects (vacancies, self-interstitials and impurities) play a crucial role in determining the electrical properties of ZnO. All defect mechanisms are strongly controlled by the growth method and conditions. While it is more straightforward examining the one and two dimensional defects, measuring and unveiling the mechanism behind the zero dimensional point defect contribution and their sole effect on the electrical properties are challenging. This is why there has been controversial discussion of results among experimental and computational works relating physical and chemical properties of ZnO to sustainable electrical properties. In this study, to correlate the dynamics in between structural and electrical properties of ZnO grown by thermal ALD; growth temperature, DEZ and DI water precursor pulse times, DEZ/DI water precursor pulse ratio, and N2 purge time were varied. To obtain growth condition specific structural and electrical properties; XRD, AFM, profilometer, ellipsometry, XPS/CasaXPS, UV-VIS spectrometer, Hall-Effect measurements were utilized. Although, there was no strong correlation for oxygen vacancies, the contribution of hydrogen impurities, zinc interstitials and oxygen vacancies to conductivity was observed at different growth conditions. Lowest resistivity and highest average % transmittance were obtained as 6.8x10-3 ohm.cm and 92% in visible spectrum (380-700 nm), respectively.

Kaynakça

  • [1] Salami, H., Uy, A., Vadapalli, A., Grob, C., Dwivedi, V., & Adomaitis, R. A., Atomic layer deposition of ultrathin indium oxide and indium tin oxide films using a trimethylindium, tetrakis(dimethylamino)tin, and ozone precursor system, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 37(010905), (2019).
  • [2] Frank, G., and Köstlin, H., Electrical properties and defect model of tin-doped indium oxide layers, Applied Physics A Solids and Surfaces, 27(4) (197–206), (1982).
  • [3] Choi, Y. J., and Park, H. H., A simple approach to the fabrication of fluorine-doped zinc oxide thin films by atomic layer deposition at low temperatures and an investigation into the growth mode, Journal of Materials Chemistry C, 2(1) (98–108), (2014).
  • [4] Khan, S., & Stamate, E., Comparative Study of Aluminum-Doped Zinc Oxide, Gallium-Doped Zinc Oxide and Indium-Doped Tin Oxide Thin Films Deposited by Radio Frequency Magnetron Sputtering, Nanomaterials, 12(9), (2022).
  • [5] Polat Gonullu, M., and Ates, H., An Overview of Atomic Layer Deposition Technique: Synthesis of ZnO, TiO2 and Al2O3 Films, GU J Sci, Part C, 7(3) (649-660), (2019).
  • [6] Florescu, D.I., Mourokh, L.G., Pollak F.H., Look, D.C., Cantwell, G., and Li, X., High spatial resolution thermal conductivity of bulk ZnO (001), Journal of Applied Physics, 91 (890-892), (2002).
  • [7] Ozgur, U., Alivov, I., Liu, C., Teke, A., Reshchikov, M.A., Dogan, S., Avrutin, V., Cho, S.J., and Morkoc, H., A comprehensive review of ZnO materials and devices, Journal of Applied Physics, 98 (041301), (2005).
  • [8] Tuomisto, F., Saarinen, K., Look, D.C., and Farlow, G.C., Physical Review B, 72 (085206), (2005).
  • [9] Mang, A., Reimann, K., and Rübenacke, S., Bandgaps, crystal-field splitting, spin-orbit coupling, and exciton binding energies in ZnO under hydrostatic pressure, Solid State Communications, 94 (4) (251-254), (1995).
  • [10] Reynolds, D.C., Look, D.C., and Jogai, B., Optically Pumped Ultraviolet Lasing From ZnO, Solid State Communications, 99 (12) (873-875), (1996).
  • [11] Molarius, J., Kaitila, J., Pensala, T., Ylilammi, M., Piezoelectric ZnO films by r.f. sputtering, J. Of Matr. SCİ.: MATERİALS İN ELECTRONİCS, 14 (431-435), (2003).
  • [12] Look, D.C., Recent advances in ZnO materials and devices. Mater Sci Eng B., 80 (383-387), (2001). [13] Nause, J. and Nemeth, B., Pressurized melt growth of ZnO boules, Semiconductor Science and TECHNOLOGY, 20(4) (S45-S48), (2005).
  • [14] Klingshirn, C., ZnO: From basics towards applications, Physica Status Solidi (b), 244(9) (3019-3407), (2007).
  • [15] Ellmer, K., Past achievements and future challenges in the development of optically transparent electrodes, Nature Photonics, 6 (809-817), (2012).
  • [16] Pearton, S., and Ren, F., Advances in ZnO-based materials for light emitting diodes, Current Opinion in Chemical Engineering, 3 (51-55), (2014).
  • [17] Hultqvist, A., Aitola, K., Sveinbjörnsson, K., Saki, Z., Larsson, F., Törndahl, T., Johansson, E., Boschloo, G., Edoff, M., Atomic Layer Deposition of Electron Selective SnO x and ZnO Films on Mixed Halide Perovskite: Compatibility and Performance. ACS applied materials & interfaces, 9 (29707-29716), (2017).
  • [18] Carcia, P.F., McLean, R.S., and Reilly, M.H., High-performance ZnO thin-film transistors on gate dielectrics grown by atomic layer deposition, Applied Physics Letters, 88 (123509), (2006).
  • [19] Ye, Z., Xu, H., Liu, T., Liu, N., Wang, Y., Zhang, N., and Liu, Y., Highly Stable Atomic Layer Deposited Zinc Oxide Thin-Film Transistors Incorporating Triple O2 Annealing, IEEE Transactions on Electronic Devices, 64-10 (4114-4122), (2017).
  • [20] Karpina, V., Lazorenko, V., Lashkarev, C., Dobrowolski, V., Kopylova, L., Baturin, V., Pustovoytov, S., Karpenko, A. J., Eremin, S., and Lytvyn, P., Zinc oxide–analogue of GaN with new perspective possibilities, Crystal Research and Technology, 39 (980-992), (2004).
  • [21] Gorla, C., Emanetoglu, N., Liang, S., Mayo, W., Lu, Y., Wraback, M., and Shen, H., Structural, optical, and surface acoustic wave properties of epitaxial ZnO films grown on (0112) sapphire by metalorganic chemical vapor deposition, J. Appl. Phys., 85 (2595-2602), (1999).
  • [22] Jung, S., Park, W., Cheong, H., Yi, G.C., Jang, H., Hong, S., and Joo, T., Time-resolved and time-integrated photoluminescence in ZnO epilayers grown on Al2O3 (0001) by metalorganic vapor phase epitaxy, Applied Physics Letters, 80 (1924), (2002).
  • [23] Zu P., Tang, Z.K, Wang, G.K.L., Kawasaki, M., Ohtomo, A., Koinuma, H., and Segawa, Y., Solid State Communications, 103 (459-463), (1997).
  • [24] Jin, B.J.,Im, S., and Lee, S.Y., Violet and UV luminescence emitted from ZnO thin films grown on sapphire by pulsed laser deposition, Thin Solid Films, 366 (107-110), (2000).
  • [25] Janotti, A., and Van De Walle, C.G., Fundamentals of zinc oxide as a semiconductor, Reports on Progress in Physics, 72 (126501), (2009).
  • [26] Ayoub, I., Kumar, V., Abdolhassani, R., Sehgal, R., Sharma, V., Sehgal, R, Swart, H.C., and Mishra, Y.K., Advances in ZnO manipulation of defects for enhancing their technological potentials, Nanotechnology Reviews, 11 (575-619), (2022).
  • [27] Dutta, S, Chattopadhyay, S., Sarkar, A., Chakrabarti, M., Sanyal, D., and Jana D., Role of defects in tailoring structural, electrical and optical properties of ZnO, Progress in Materials Science, 54 (89-136), (2009).
  • [28] Janotti, A., and Van De Walle, C.G., Oxygen vacancies in ZnO, Applied Physics Letters, 87 (122102), (2005).
  • [29] Janotti, A., and Van de Walle, C.G., New insights into the role of native point defects in ZnO, Journal of Crystal Growth, 287 (58–65), (2006).
  • [30] Janotti, A., and Van de Walle, C.G., Native point defects in ZnO, Phys Rev B., 76 (165202), (2007).
  • [31] Guziewicz, E., Godlewski, M., Krajewski, T.A., Wachnicki, L., Luka, G., Domagala, J.Z., Paszkowicz, W., Kowalski,B.J., Witkowski, B.S., Duzynska, A., and Suchocki, A., Zinc oxide grown by atomic layer deposition - a material for novel 3D electronics, Physica Status Solidi (b) 247 (1611-1615), (2010).
  • [32] Liu, L., Mei, Z., Tang, A., Azarov, A., Kuznetsov, A., Xue, Q., and Du, X., Oxygen vacancies: The origin of n-typeconductivity in ZnO, Physical Review B, 93 (235305), (2016).
  • [33] Halliburton, L.E., Giles, N.C., Garces, N.Y., Luo, M., Xu, C., Bai, L. and Boatner, L.A., Production of native donors in ZnO by annealing at high temperature in Zn vapor, Applied Physics Letters, 87 (172108), (2005).
  • [34] Hagemark, K.I., and Toren, P.E., Determination of Excess Zn in ZnO: The Phase Boundary. Journal of Electrochemical Society, 122 (992), (1975).
  • [35] Tuomisto, F., Saarinen, K., Grasza, K., and Mycielski, A., Observation of Zn vacancies in ZnO grown by chemical vapor transport, Physica Status Solidi (b), 243(4) (794-798), (2006).
  • [36] Guziewicz, E., Krajewski, T.A., Przezdziecka, E., Korona, K.P., Czechowski, N., Klopotowski, L., and Terziyska, P., Zinc Oxide Grown by Atomic Layer Deposition: From Heavily n-Type to p-Type Material, Phys. Status Solidi B, 257 (1900472), (2020).
  • [37] Guziewicz, E., Godlewski, M., Wachnicki, L., Krajewski, T.A., Luka, G., Gieraltowska, S., Jakiela, R., Stonert, A., Lisowski, W., Krawczyk, M., Sobczak, J.W., and Jablonski, A., Semiconductor Science and Technology, 27 (074011), (2012).
  • [38] Guziewicz, E., Kowalik, I.A., Godlewski, M., Kopalko, K., Osinniy, V., Wojcik, A., Yatsunenko, S., Lusakowska, E., Paszkowicz, W., and Guziewicz, M., Extremely low temperature growth of ZnO by atomic layer deposition, Journal of Applied Physics, 103 (033515), (2008).
  • [39] Pung, S., Choy, K., Hou, X., and Shan, C., Preferential growth of ZnO thin films by the atomic layer deposition technique, Nanotechnology, 19 (435609), (2008).
  • [40] Weckman, T., and Laasonen, K., Atomic Layer Deposition of Zinc Oxide: Study on the Water Pulse Reactions from First-Principles, The Journal of Physical Chemistry, 122 (7685-7694), (2018).
  • [41] Fujimura, N., Nishihara, T., Goto, S., Xu, J., and Ito, T., Control of preferred orientation for ZnOx films: control of self-texture, Journal of Crystal Growth, 130 (269-279), (1993). [42] Nguyen, T.,Valle, N., Guillot, J., Bour, J., Adjeroud, N., Fleming, Y., Guennou, M., Audinot, J.N., El Adib, B., Joly, R., Arl, D., Frache, G., and Polesel-Maris, J., Elucidating the growth mechanism of ZnO films by atomic layer deposition with oxygen gas via isotopic tracking, Journal of Materials Chemistry C, 9 (4307-4315), (2021).
  • [43] Lim, J., and Lee, C., Effect of substrate temperature on the microstructure and photoluminescence properties of ZnO thin films prepared by atomic layer deposition, Thin Solid Films, 515 (3335-3338), (2007).
  • [44] Cabral, L., Lopez-Richard, V., Da Silva, J.L.F., Marques, G.E., Lima, M.P., Onofre, Y.J., Teodoro, M.D., and Godoy, M.P.F., Insights into the nature of optically active defects of ZnO, Journal of Luminescence, 227 (117536), (2020).
  • [45] Iqbal, J., Jilani, A., Hassan, P.M.Z., Rafique, S., Jafer, R., and Alghamdi, A.A., ALD grown nanostructured ZnO thin films: Effect of substrate temperature on thickness and energy band gap, Journal of King Saud Universiyt-Science, 28 (347-354), (2016).
  • [46] Gordillo, G., Florez, J.M., and Hernandez, L.C., Preparation and characterization of CdTe thin films deposited by CSS, Solar Energy Materials and Solar Cells, 37 (273-281), (1995).
  • [47] Ameur, S.B., Bel hadjltaief, H., Barhoumi, A., Duponchel, B., Leroy, G., Amlouk, M., and Guermazi, H., Physical investigations and photocatalytic activities on ZnO and SnO2 thin films deposited on flexible polymer substrate, Vacuum, 155 (546-552), (2018).
  • [48] Mishra, S., Przezdziecka, E., Wozniak, W., Adhikari, A., Jakiel, R., Paszkowicz, W., Sulich, A., Ozga, M., Kopalko, K., and Guziewicz, E., Structural Properties of Thin ZnO Films Deposited by ALD under O-Rich and Zn-Rich Growth Conditions and Their Relationship with Electrical Parameters, Materials, 14 (4048), (2021).
  • [49] Jain, S., Shah, J., Negi, N.S., Sharma, C., and Kotnala, R.K., Significance of interface barrier at electrode of hematite hydroelectric cell for generating ecopower by water splitting, International Journal of Energy Research, 44, 14 (11111-11134), (2019).
  • [50] Cho, Y., and Kang, K., and Park, H., Anion-controlled passivation effect of the atomic layer deposited ZnO films by F substitution to O-related defects on the electronic band structure for transparent contact layer of solar cell applications, Solar Energy Materials & Solar Cells, 132 (403-409), (2015).
  • [51] Crist B.V., (1999) Handbook of Monochromatic Xps Spectra, vol. 2, Commercially Pure Binary Oxides, XPS International Inc., Mountain View, California, 94040, USA, (818-827).
  • [52] Galmiz, O., Stupavska, M., Wulff, H., Kersten, H., Brablec, A., Cernak, M., Deposition of Zn-containing films using atmospheric pressure plasma jet, Open Chem., 13 (198-203), (2015).
  • [53] Godlewski, M., Guziewicz, E., Luka, G., Krajewski, T., Lukasiewicz, M., Wachnicki, L., Wachnicka, A., Kopalko, K., and Dalati, A.S., ZnO layers grown by Atomic Layer Deposition: A new material for transparent conductive oxide, Thin Solid Films, 518 (1145-1148), (2009).
  • [54] Chandrasekar, L.B., Nagarajan, S., Karunakaran, M., and Thangadurai, T.D., (2019) Structural, optical and electrical properties of undoped and doped ZnO thin films, 2D Materials, eBook.
  • [55] Laube, J., Nübling, D., Ben, H., Gutsch, S., Hiller, D., and Zacharias, M., Resistivity of atomic layer deposition grown ZnO: The influence of deposition temperature and post-annealing, Thin Solid Films, 603 (377-381), (2016).
Toplam 53 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Malzemelerin Optik Özellikleri, Bileşik Yarı İletkenler, Elektronik,Optik ve Manyetik Malzemeler
Bölüm Tasarım ve Teknoloji
Yazarlar

Bilge İmer 0000-0002-7336-5508

Yayımlanma Tarihi 27 Eylül 2023
Gönderilme Tarihi 6 Eylül 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 11 Sayı: 3

Kaynak Göster

APA İmer, B. (2023). Dynamics in between Structural and Electrical Properties of as Grown ZnO Thin Films by Thermal ALD. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 11(3), 867-884. https://doi.org/10.29109/gujsc.1348409

                                     16168      16167     16166     21432        logo.png   


    e-ISSN:2147-9526