Araştırma Makalesi
BibTex RIS Kaynak Göster

Hibrit-Elektrikli İtki Sistemine Sahip Cessna 172S Uçağında Uçuş Parametrelerinin Gri İlişkisel Analiz Yöntemi ile Optimizasyonu

Yıl 2023, Cilt: 11 Sayı: 4, 1223 - 1231, 28.12.2023
https://doi.org/10.29109/gujsc.1394062

Öz

Bu çalışmada, Gri ilişkisel Analiz yöntemi kullanılarak hibrit-elektrikli itki sistemine sahip Cessna 172S uçağında yakıt ekonomisi, uçuş maliyeti ve CO2 azaltılma değerlerine etki eden uçuş parametreleri optimize edilmiştir. Bu amaçla beş farklı uçuş süresi (A) ve beş farklı seyir irtifası (B) için tasarım sonucu elde edilen uçuş verileri konvansiyonel değerlerle kıyaslanarak optimum uçuş süresi ve seyir irtifası belirlenmiştir. Uçuş görevleri iki farklı parametre için beş seride L25 (5^2) ortogonal dizin kullanılarak tasarlanmıştır. Optimum yakıt, maliyet tasarrufu ve CO2 azaltma değerinin oluştuğu görev dizilimi A3B3 olarak 120 dak uçuş süresi, 2400 m seyir irtifası için elde edilirken en düşük görev performans verilerine sahip dizilim ise A5B1 olarak 180 dak uçuş süresi, 1200 m seyir irtifalı uçuş görevi için elde edilmiştir. Gri ilişkisel analiz yöntemi ile elde edilen veriler ile kavramsal tasarım sonucunda elde edilen verilerin birbiri ile uyum içinde olduğunu görülmüştür.

Kaynakça

  • [1] Xie Y, Savvarisal A, Tsourdos A, Zhang D, Gu J. Review of hybrid electric powered aircraft, its conceptual design and energy management methodologies. Chinese Journal of Aeronautics. 2012; 34: 432-450.
  • [2] Committee on Propulsion and Energy Systems to Reduce Commercial Aviation Carbon Emissions. Commercial aircraft propulsion and energy systems research. Washington, D.C. National Academies Press. 2016.
  • [3] Darecki M, Edelstenne C, Enders T. Flightpath 2050 Europe’s vision for aviation. Luxembourg: European Commis-sion. 2011.
  • [4] Pornet C, Isikveren AT. Conceptual design of hybrid-electric transport aircraft. Progress in Aerospace Sciences. 2015; 79: 114-135.
  • [5] Righi H. Hybrid electric aircraft. Mississippi State University. 2016.
  • [6] Friedrich C, Robertson PA. Hybrid-electric propulsion for aircraft. Journal of Aircraft. 2015; 52: 176-189.
  • [7] Iwanizki M, Arzberger MJ, Plohr M, Silberhorn D, Hecken T. Conceptual design studies of short range aircraft configurations with hybrid electric propulsion. In AIAA Aviation 2019 Forum, Dallas, Texas, US, 2019.
  • [8] Nicolay S, Kapuk S, Liu Y, Elham A. Conceptual design and optimization of a general aviation aircraft with fuel cells and hydrogen. International Journal of Hydrogen Energy. 2021; 46: 32676-32694.
  • [9] Hoelzen J, Liu Y, Bensmann B, Winnefeld C, Elham A, Friedrichs J, Hanke-Rauschenbach R. Conceptual design of operation strategies for hybrid electric aircraft. Energies. 2018; 11: 217.
  • [10] Ata I, Akgül B. Investigation of hybrid-electric propulsion system applied on Cessna 172S aircraft. International Journal of Energy Studies. 2023; 8: 385-399.
  • [11] Chai X, Yu X, Wang Y. Multipoint optimization on fuel efficiency in conceptual design of wide-body aircraft. Chinese Journal of Aeronautics. 2018; 31: 99-106.
  • [12] Information Manual Skyhawk SP, Cessna aircraft company model 172S NAV III avionics option- GFC 700 AFCS, , Cessna Aircraft Company, Wichita, Kansas, USA, 2007.
  • [13] Hospodka J, Bínová H, Pleninger S. Assessment of all-electric general aviation aircraft. Energies 2020; 13(23): 6206.
  • [14] Turkey Electricity Generation-Transmission Statistics for 2019, 38-Graph III.I - Distribution of Turkey's electricity generation by sources in 2019, Webpage: https://www.teias.gov.tr/tr-TR/turkiye-elektrik-uretim-iletim-istatistikleri (Son erişim: Eylül 2021).
  • [15] Turkish Greenhouse Gas Inventory 1990-2019, National inventory report for submission under the united nations framework convention on climate change, Tüik, April 2021.
  • [16] Webpage:https://www.tedas.gov.tr/#!tedas_tarifeler (Son erişim: Eylül 2021).
  • [17] Operator’s Manual Lycoming O-360, HO-360, IO-360, AIO-360, HIO-360 & TIO-360 Series, 8th Edition, Part No. 60297-12, October 2005.
  • [18] Acır A., Canlı ME, Ata I, Çakıroğlu R. Parametric optimization of energy and exergy analyses of a novel solar air heater with grey relational analysis. Applied Thermal Engineering. 2017; 122: 330-338.
  • [19] Çakıroğlu R, Tanürün, HE, Acır A, Üçgül F, Olkun S. Optimization of NACA 4412 augmented with a gurney flap by using grey relational analysis. Journal of the Brazilian Society of Mechanical Sciences and Engineering. 2023; 45(3): 167.

Optimizing Flight Parameters on a Cessna 172S Aircraft with a Hybrid-Electric Propulsion System Using the Gray Relational Analysis Method

Yıl 2023, Cilt: 11 Sayı: 4, 1223 - 1231, 28.12.2023
https://doi.org/10.29109/gujsc.1394062

Öz

Bu çalışmada, gri ilişkisel analiz yöntemini kullanarak kavramsal olarak tasarımı yapılan hibrit elektirik itki sistemine sahip Cessna172S uçağının yakıt ekonomisi, uçuş maliyetine ve CO2 azaltılmasına etki eden parametreler optimize edilmiştir. Bu amaçla beş farklı uçuş süresi (A) ve beş farklı uçuş irtifası (B) için tasarım sonucu elde edilen uçuş verileri konvansiyonel değerlerle kıyaslanarak optimum uçuş süresi ve seyir irtifası belirlenmiştir. Uçuş görevleri iki farklı parametre için beş seride L25 (5^2) orthogonal dizin kullanılarak tasarlanmıştır. En yüksek yakıt tasarrufu, maliyet tasarrufu ve CO2 azlatma değeri olarak A3B3 dizilimi olduğu görülmüştür. Sonuçlar, Gri ilişkisel analiz yöntemi ile elde edilen verilerin kavramsal analiz sonucu elde edilen veriler ile uyum içinde olduğunu göstermiştir.

Kaynakça

  • [1] Xie Y, Savvarisal A, Tsourdos A, Zhang D, Gu J. Review of hybrid electric powered aircraft, its conceptual design and energy management methodologies. Chinese Journal of Aeronautics. 2012; 34: 432-450.
  • [2] Committee on Propulsion and Energy Systems to Reduce Commercial Aviation Carbon Emissions. Commercial aircraft propulsion and energy systems research. Washington, D.C. National Academies Press. 2016.
  • [3] Darecki M, Edelstenne C, Enders T. Flightpath 2050 Europe’s vision for aviation. Luxembourg: European Commis-sion. 2011.
  • [4] Pornet C, Isikveren AT. Conceptual design of hybrid-electric transport aircraft. Progress in Aerospace Sciences. 2015; 79: 114-135.
  • [5] Righi H. Hybrid electric aircraft. Mississippi State University. 2016.
  • [6] Friedrich C, Robertson PA. Hybrid-electric propulsion for aircraft. Journal of Aircraft. 2015; 52: 176-189.
  • [7] Iwanizki M, Arzberger MJ, Plohr M, Silberhorn D, Hecken T. Conceptual design studies of short range aircraft configurations with hybrid electric propulsion. In AIAA Aviation 2019 Forum, Dallas, Texas, US, 2019.
  • [8] Nicolay S, Kapuk S, Liu Y, Elham A. Conceptual design and optimization of a general aviation aircraft with fuel cells and hydrogen. International Journal of Hydrogen Energy. 2021; 46: 32676-32694.
  • [9] Hoelzen J, Liu Y, Bensmann B, Winnefeld C, Elham A, Friedrichs J, Hanke-Rauschenbach R. Conceptual design of operation strategies for hybrid electric aircraft. Energies. 2018; 11: 217.
  • [10] Ata I, Akgül B. Investigation of hybrid-electric propulsion system applied on Cessna 172S aircraft. International Journal of Energy Studies. 2023; 8: 385-399.
  • [11] Chai X, Yu X, Wang Y. Multipoint optimization on fuel efficiency in conceptual design of wide-body aircraft. Chinese Journal of Aeronautics. 2018; 31: 99-106.
  • [12] Information Manual Skyhawk SP, Cessna aircraft company model 172S NAV III avionics option- GFC 700 AFCS, , Cessna Aircraft Company, Wichita, Kansas, USA, 2007.
  • [13] Hospodka J, Bínová H, Pleninger S. Assessment of all-electric general aviation aircraft. Energies 2020; 13(23): 6206.
  • [14] Turkey Electricity Generation-Transmission Statistics for 2019, 38-Graph III.I - Distribution of Turkey's electricity generation by sources in 2019, Webpage: https://www.teias.gov.tr/tr-TR/turkiye-elektrik-uretim-iletim-istatistikleri (Son erişim: Eylül 2021).
  • [15] Turkish Greenhouse Gas Inventory 1990-2019, National inventory report for submission under the united nations framework convention on climate change, Tüik, April 2021.
  • [16] Webpage:https://www.tedas.gov.tr/#!tedas_tarifeler (Son erişim: Eylül 2021).
  • [17] Operator’s Manual Lycoming O-360, HO-360, IO-360, AIO-360, HIO-360 & TIO-360 Series, 8th Edition, Part No. 60297-12, October 2005.
  • [18] Acır A., Canlı ME, Ata I, Çakıroğlu R. Parametric optimization of energy and exergy analyses of a novel solar air heater with grey relational analysis. Applied Thermal Engineering. 2017; 122: 330-338.
  • [19] Çakıroğlu R, Tanürün, HE, Acır A, Üçgül F, Olkun S. Optimization of NACA 4412 augmented with a gurney flap by using grey relational analysis. Journal of the Brazilian Society of Mechanical Sciences and Engineering. 2023; 45(3): 167.
Toplam 19 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Uçak Performansı ve Uçuş Kontrol Sistemleri
Bölüm Tasarım ve Teknoloji
Yazarlar

İsmail Ata 0000-0003-0412-8397

Erken Görünüm Tarihi 26 Aralık 2023
Yayımlanma Tarihi 28 Aralık 2023
Gönderilme Tarihi 21 Kasım 2023
Kabul Tarihi 12 Aralık 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 11 Sayı: 4

Kaynak Göster

APA Ata, İ. (2023). Hibrit-Elektrikli İtki Sistemine Sahip Cessna 172S Uçağında Uçuş Parametrelerinin Gri İlişkisel Analiz Yöntemi ile Optimizasyonu. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 11(4), 1223-1231. https://doi.org/10.29109/gujsc.1394062

                                     16168      16167     16166     21432        logo.png   


    e-ISSN:2147-9526