Araştırma Makalesi
BibTex RIS Kaynak Göster

Öznitelik Seçimi ile Desteklenen Makine Öğrenmesine Dayalı Göğüs Kanserinin Erken Tespiti ve Teşhisi

Yıl 2024, Cilt: 12 Sayı: 2, 675 - 690, 29.06.2024
https://doi.org/10.29109/gujsc.1400991

Öz

Kanserin tam nedeni bilinmemekle birlikte, yaşam tarzı, çevresel faktörler, beslenme ve genetik gibi birçok faktörün kanser gelişimine katkıda bulunabileceği bilinmektedir. Kanser türleri arasında özellikle göğüs kanseri, dünya genelinde kadınlar arasında görülme sıklığı yüksek olan bir hastalıktır. Göğüs kanserinin teşhisinde fiziksel muayene ve mamografi görüntülerinin incelenmesi gibi yöntemler kullanılmaktadır. Gelişen teknolojiyle birlikte makine öğrenmesi uygulamalarının tıp alanında kullanımı giderek artmaktadır. Bu sayede göğüs kanserinin daha erken aşamada ve hızlı şekilde teşhisi konusunda doktorlara yardımcı olabilecek umut verici çalışmalar giderek artmaktadır. Bu çalışmada, göğüs kanserinin erken teşhisinde kullanmak için 4 farklı öznitelik seçimi ve 5 farklı makine öğrenme yönteminin performansları karşılaştırılmıştır. Çalışmanın ilk aşamasında, Principal Component Analysis (PCA), Recursive feature elimination, Variance inflation factors (VIF) ve Univariate feature selection yöntemleri ile veri kümesinde hedef özniteliğe en çok etki eden öznitelikler seçilerek veri kümesindeki öznitelik sayısı azaltılmıştır. İkinci aşamada, K Nearest Neighbors (KNN), Naive Bayes, Decision Tree, Support Vector Machine (SVM) ve Random Forest makine öğrenme algoritmaları orijinal ve öznitelik seçimi yapılmış veri kümelerine dayalı olarak eğitilmiş ve test edilmiştir. Test sonuçlarına göre %98,83 doğruluk, %99 kesinlik ve %99 duyarlılık değerleri ile Variance inflation factors (VIF) öznitelik seçimi ve Random Forest algoritması kullanılarak elde edilmiştir. Daha az öznitelik kullanımı sayesinde eğitim ve test aşamalarında benzer başarı değerleri, kaynak kullanımı ile sağlanmıştır. Çalışmada eğitilip test edilen makine öğrenme modeli Flask framework kullanılarak bir web ara yüzüne sahip uygulama haline getirilmiştir.

Kaynakça

  • [1] Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA A Cancer Journal for Clinicians. 2021; 2021: 209–249.
  • [2] Koçak HS, Olçar E, Güngörmüş Z. Birinci Derece Yakını Meme Kanserli Kadınların Korku Düzeyinin Erken Tanı Davranışlarına Etkisi. Hemşirelik Bilimi Dergisi. 2022; 6: 22-29.
  • [3] Altındağ Bayrak E, Kırcı P, Ensari T, Seven E, Dağtekin M. Göğüs Kanseri Verileri Üzerinde Makine Öğrenmesi Yöntemlerinin Uygulanması. Journal of Intelligent Systems: Theory and Applications. 2022; 5: 35-41.
  • [4] Pantel P. Breast cancer diagnosis and prognosis. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=78266df15a9754b7661f1f01722f9f4aea4244fb
  • [5] McMorran J, Crowther DC. Fine needle aspiration cytology (breast), https://link.springer.com/book/10.1007/978-3-031-26900-4
  • [6] Lavanya D, Rani DKU. Analysis of feature selection with classification: Breast cancer datasets. Indian Journal of Computer Science and Engineering (IJCSE). 2011; 2: 756-763.
  • [7] Tamer HY. Akıllı Şehirlerde Veri Yönetimi Yaklaşımları. Abant Sosyal Bilimler Dergisi. 2022; 22: 519-534.
  • [8] Koçak A, Ergün PMA. Sağlıkta veri kalitesi ve veri madenciliği uygulamaları. Disiplinlerarası Yenilik Araştırmaları Dergisi. 2023; 3: 23-30.
  • [9] Demir, F. Ultrason RF Sinyallerinden Göğüs Kanserinin Derin Öğrenme Tabanlı Yaklaşımlarla Tespit Edilmesi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2022; 34: 761-768.
  • [10] Doğan, H, Tatar A, Tanyıldızı AK, Taşar B. Breast Cancer Diagnosis with Machine Learning Techniques. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi. 2022; 11: 594-603.
  • [11] Bozkurt Keser S, Keskin K. Ağırlıklı Oy Tabanlı Topluluk Sınıflandırma Algoritması ile Göğüs Kanseri Teşhisi. Mühendislik Bilimleri ve Araştırmaları Dergisi. 2022; 4: 112-120.
  • [12] Erdem E, Aydin T. Göğüs Kanseri Histopatolojik Görüntü Sınıflandırması. Bilişim Teknolojileri Dergisi. 2022; 14: 87-94.
  • [13] Talo M. Meme Kanseri Histopatalojik Görüntülerinin Konvolüsyonal Sinir Ağları ile Sınıflandırılması. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2019; 31: 391-398.
  • [14] Spanhol F, Oliveira E, Petitjean C, Heutte L. Breast cancer histopathological image classification using Convolutional Neural Networks. International Joint Conference on Neural Networks (IJCNN). 2016; 32: 2560-2567.
  • [15] Han Z, Wei B, Zheng Y, Yin Y, Li K, Li S. Breast cancer multi-classification from histopathological images with structured deep learning model. Scientific reports, 2017; 7: 4172-4182.
  • [16] Alom Z, Yakopcic C, Taha M, Asari K. Breast Cancer Classification from Histopathological Images with Inception Recurrent Residual Convolutional Neural Network. J Digit Imaging, 2019; 45: 1-13.
  • [17] Kahya, AAM, Al-Hayani W, Algamal ZY. Classification of breast cancer histopathology images based on adaptive sparse support vector machine. Journal of Applied Mathematics and Bioinformatics. 2017; 7: 1-15.
  • [18] Gupta V, Bhavsar A. Breast Cancer Histopathological Image Classification: Is Magnification Important. 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW): Proceedings. 2017: 769-776.
  • [19] Dandıl E, Serin Z. Derin Sinir Ağları Kullanarak Histopatolojik Görüntülerde Meme Kanseri Tespiti. Avrupa Bilim ve Teknoloji Dergisi. 2020; Ejosat Özel Sayı: 451-463.
  • [20] Narin A, Kefeli SK. Meme Kanserinin Evrişimsel Sinir Ağı Modelleriyle Tespitinde Farklı Görüntü Büyütme Oranlarının Etkisi. Karaelmas Fen ve Mühendislik Dergisi. 2020; 10: 186-194.
  • [21] Akalın B, Veranyurt Ü. Sağlıkta Dijitalleşme Ve Yapay Zekâ. SDÜ Sağlık Yönetimi Dergisi. 2022; 2: 128-137.
  • [22] Hoşgör H, Güngördü H. Sağlıkta Yapay Zekanın Kullanım Alanları Üzerine Nitel Bir Araştırma. Avrupa Bilim ve Teknoloji Dergisi. 2022; 35: 395-407.
  • [23] Purkuloğlu E, Ün A, Yürürdurmaz F. Hemşire Karar Destek Sistemleri Uygulamaları. Hacettepe Sağlık İdaresi Dergisi. 2019; 22: 491-514.
  • [24] Mohammed TR, Al-Aaraj H, Rubbai YSY, Arabyat MM. Diagnosis of Breast Cancer Pathology on the Wisconsin Dataset with the Help of Data Mining Classification and Clustering Techniques. Applied Bionics and Biomechanics. 2022; 2022: 1-9.
  • [25] Obaid OI, Mohammed MA, Ghani MKA, Mostafa A, Taha F. Evaluating the performance of machine learning techniques in the classification of Wisconsin Breast Cancer. International Journal of Engineering & Technology. 2018; 7: 160-166.
  • [26] Agarap AFM. On breast cancer detection: an application of machine learning algorithms on the wisconsin diagnostic dataset. The 2nd International Conference on Machine Learning and Soft Computing (ICMLSC '18): Proceedings. 2018: 1-5.
  • [27] Salem N, Hussein S. Data dimensional reduction and principal components analysis. Procedia Computer Science. 2019; 161: 292-299.
  • [28] Marcoulides KM, Raykov T. Evaluation of Variance Inflation Factors in Regression Models Using Latent Variable Modeling Methods. Educational and Psychological Measurement. 2019; 79: 874-882.
  • [29] Çetin Taş İ. An Applied Analysis of Breast Cancer Diagnosis By Using Different Methods. Abant Sağlık Bilimleri ve Teknolojileri Dergisi. 2022; 2: 72-87.
  • [30] Howley T, Madden MG, O'Connell M, Ryder AG. The Effect of Principal Component Analysis on Machine Learning Accuracy with High Dimensional Spectral Data. Knowledge-Based Systems. 2006; 19: 209-222.
  • [31] Parlak, B, Uysal, AK. On feature weighting and selection for medical document classification. In Developments and advances in intelligent systems and applications. Springer International Publishing. 2018; 718: 269-282.
  • [32] Parlak, B, Uysal, AK. On classification of abstracts obtained from medical journals. Journal of Information Science. 2020; 46: 648-663.
  • [33] Subho RH, Chowdhury R, Chaki D, Islam S, Rahman M. A Univariate Feature Selection Approach for Finding Key Factors of Restaurant Business. IEEE Region 10 Symposium: Proceedings. 2019: 605-610.
  • [34] Niquini FGF, Branches AMB, Costa JFCL, Moreira GC, Schneider CL, Araújo FC, Capponi LN. Recursive Feature Elimination and Neural Networks Applied to the Forecast of Mass and Metallurgical Recoveries in A Brazilian Phosphate Mine. Minerals. 2023; 13: 748-759.
  • [35] Hu LY, Huang MW, Ke SW et al. The distance function effect on k-nearest neighbor classification for medical datasets. SpringerPlus. 2016; 5: 1-9.
  • [36] Anand MV, KiranBala B, Srividhya SR, Kavitha C, Younus M, Rahman H. Gaussian Naïve Bayes Algorithm: A Reliable Technique Involved in the Assortment of the Segregation in Cancer. Mobile Information Systems. 2022; 2022: 1-7.
  • [37] Song YY, Lu Y. Decision tree methods: applications for classification and prediction. Shanghai Arch Psychiatry. 2015; 27: 130-135.
  • [38] Cervantes J, Garcia-Lamont F, Rodríguez-Mazahua L, Lopez A. A comprehensive survey on support vector machine classification: Applications, challenges and trends. Neurocomputing. 2020; 408: 189-215.
  • [39] Breiman L. Random Forests. Machine Learning. 2001; 45: 5-32.
  • [40] Şahin H, İçen D. Application of Random Forest Algorithm for the Prediction of Online Food Delivery Service Delay. Turkish Journal of Forecasting. 2021; 5: 1-11.
  • [41] Saygılı A. Classification and Diagnostic Prediction of Breast Cancers via Different Classifiers. International Scientific and Vocational Studies Journal. 2018; 2: 48-56.
  • [42] Powers, D, Powers A. Evaluation: From precision, recall and F-measure to ROC, informedness, markedness & correlation. Journal of Machine Learning Technologies. 2011; 2: 2229-3981.
  • [43] Sokolova, M, Japkowicz, N, Szpakowicz, S. Beyond Accuracy, F-Score and ROC: A Family of Discriminant Measures for Performance Evaluation. AI 2006: Advances in Artificial Intelligence. Lecture Notes in Computer Science. 2006; 4304: 1015-1021.
  • [44] Rasool A, Bunterngchit C, Tiejian L, Islam MR, Qu Q, Jiang Q. Improved Machine Learning-Based Predictive Models for Breast Cancer Diagnosis. International Journal of Environmental Research and Public Health. 2022; 19: 1-19.
  • [45] Aslam FA, Mohammed HN, Lokhande PS. Efficient Way Of Web Development Using Python And Flask, International Journal of Advanced Research in Computer Science. 2015; 6: 54-57.
  • [46] Türker A, Bülbül YE, Öksüz A, Yurdabak Karaca G. Kanser Teşhis ve Tedavisinde Nano/mikromotor Teknolojisi. Gazi University Journal of Science Part C: Design and Technology. 2023; 11: 652-672.

Early Detection and Diagnosis of Breast Cancer Based on Machine Learning Supported by Feature Selection

Yıl 2024, Cilt: 12 Sayı: 2, 675 - 690, 29.06.2024
https://doi.org/10.29109/gujsc.1400991

Öz

Although the exact cause of cancer is not known, it is known that many factors such as lifestyle, environmental factors, nutrition and genetics may contribute to the development of cancer. Among the cancer types, especially breast cancer is a disease with a high incidence among women worldwide. Methods such as physical examination and examination of mammography images are used in the diagnosis of breast cancer. With the developing technology, the use of machine learning applications in the field of medicine is increasing. In this way, there is an increasing number of promising studies that can help doctors diagnose breast cancer at an earlier and faster stage. In this study, the performances of 4 different feature selection and 6 different machine learning methods to be used in the early detection of breast cancer were compared. In the first phase of the study, the number of features in the dataset was reduced by selecting the features that have the most impact on the target feature in the dataset with Principal Component Analysis (PCA), Recursive Feature Elimination, Variance inflation factors (VIF) and Univariate feature selection methods. In the second stage, K Nearest Neighbors (KNN), Naive Bayes, Decision Tree, SVM and Random Forest machine learning algorithms were trained and tested based on original and feature-selected datasets. The highest model test performance was obtained by using Variance inflation factors (VIF) and Random Forest algorithm. According to the test results, 98.83% accuracy, 99% precision and 99% recall values were obtained. In addition, the machine learning model that was trained and tested in the study was turned into an application with a web interface using flask framework.

Kaynakça

  • [1] Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA A Cancer Journal for Clinicians. 2021; 2021: 209–249.
  • [2] Koçak HS, Olçar E, Güngörmüş Z. Birinci Derece Yakını Meme Kanserli Kadınların Korku Düzeyinin Erken Tanı Davranışlarına Etkisi. Hemşirelik Bilimi Dergisi. 2022; 6: 22-29.
  • [3] Altındağ Bayrak E, Kırcı P, Ensari T, Seven E, Dağtekin M. Göğüs Kanseri Verileri Üzerinde Makine Öğrenmesi Yöntemlerinin Uygulanması. Journal of Intelligent Systems: Theory and Applications. 2022; 5: 35-41.
  • [4] Pantel P. Breast cancer diagnosis and prognosis. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=78266df15a9754b7661f1f01722f9f4aea4244fb
  • [5] McMorran J, Crowther DC. Fine needle aspiration cytology (breast), https://link.springer.com/book/10.1007/978-3-031-26900-4
  • [6] Lavanya D, Rani DKU. Analysis of feature selection with classification: Breast cancer datasets. Indian Journal of Computer Science and Engineering (IJCSE). 2011; 2: 756-763.
  • [7] Tamer HY. Akıllı Şehirlerde Veri Yönetimi Yaklaşımları. Abant Sosyal Bilimler Dergisi. 2022; 22: 519-534.
  • [8] Koçak A, Ergün PMA. Sağlıkta veri kalitesi ve veri madenciliği uygulamaları. Disiplinlerarası Yenilik Araştırmaları Dergisi. 2023; 3: 23-30.
  • [9] Demir, F. Ultrason RF Sinyallerinden Göğüs Kanserinin Derin Öğrenme Tabanlı Yaklaşımlarla Tespit Edilmesi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2022; 34: 761-768.
  • [10] Doğan, H, Tatar A, Tanyıldızı AK, Taşar B. Breast Cancer Diagnosis with Machine Learning Techniques. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi. 2022; 11: 594-603.
  • [11] Bozkurt Keser S, Keskin K. Ağırlıklı Oy Tabanlı Topluluk Sınıflandırma Algoritması ile Göğüs Kanseri Teşhisi. Mühendislik Bilimleri ve Araştırmaları Dergisi. 2022; 4: 112-120.
  • [12] Erdem E, Aydin T. Göğüs Kanseri Histopatolojik Görüntü Sınıflandırması. Bilişim Teknolojileri Dergisi. 2022; 14: 87-94.
  • [13] Talo M. Meme Kanseri Histopatalojik Görüntülerinin Konvolüsyonal Sinir Ağları ile Sınıflandırılması. Fırat Üniversitesi Mühendislik Bilimleri Dergisi. 2019; 31: 391-398.
  • [14] Spanhol F, Oliveira E, Petitjean C, Heutte L. Breast cancer histopathological image classification using Convolutional Neural Networks. International Joint Conference on Neural Networks (IJCNN). 2016; 32: 2560-2567.
  • [15] Han Z, Wei B, Zheng Y, Yin Y, Li K, Li S. Breast cancer multi-classification from histopathological images with structured deep learning model. Scientific reports, 2017; 7: 4172-4182.
  • [16] Alom Z, Yakopcic C, Taha M, Asari K. Breast Cancer Classification from Histopathological Images with Inception Recurrent Residual Convolutional Neural Network. J Digit Imaging, 2019; 45: 1-13.
  • [17] Kahya, AAM, Al-Hayani W, Algamal ZY. Classification of breast cancer histopathology images based on adaptive sparse support vector machine. Journal of Applied Mathematics and Bioinformatics. 2017; 7: 1-15.
  • [18] Gupta V, Bhavsar A. Breast Cancer Histopathological Image Classification: Is Magnification Important. 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW): Proceedings. 2017: 769-776.
  • [19] Dandıl E, Serin Z. Derin Sinir Ağları Kullanarak Histopatolojik Görüntülerde Meme Kanseri Tespiti. Avrupa Bilim ve Teknoloji Dergisi. 2020; Ejosat Özel Sayı: 451-463.
  • [20] Narin A, Kefeli SK. Meme Kanserinin Evrişimsel Sinir Ağı Modelleriyle Tespitinde Farklı Görüntü Büyütme Oranlarının Etkisi. Karaelmas Fen ve Mühendislik Dergisi. 2020; 10: 186-194.
  • [21] Akalın B, Veranyurt Ü. Sağlıkta Dijitalleşme Ve Yapay Zekâ. SDÜ Sağlık Yönetimi Dergisi. 2022; 2: 128-137.
  • [22] Hoşgör H, Güngördü H. Sağlıkta Yapay Zekanın Kullanım Alanları Üzerine Nitel Bir Araştırma. Avrupa Bilim ve Teknoloji Dergisi. 2022; 35: 395-407.
  • [23] Purkuloğlu E, Ün A, Yürürdurmaz F. Hemşire Karar Destek Sistemleri Uygulamaları. Hacettepe Sağlık İdaresi Dergisi. 2019; 22: 491-514.
  • [24] Mohammed TR, Al-Aaraj H, Rubbai YSY, Arabyat MM. Diagnosis of Breast Cancer Pathology on the Wisconsin Dataset with the Help of Data Mining Classification and Clustering Techniques. Applied Bionics and Biomechanics. 2022; 2022: 1-9.
  • [25] Obaid OI, Mohammed MA, Ghani MKA, Mostafa A, Taha F. Evaluating the performance of machine learning techniques in the classification of Wisconsin Breast Cancer. International Journal of Engineering & Technology. 2018; 7: 160-166.
  • [26] Agarap AFM. On breast cancer detection: an application of machine learning algorithms on the wisconsin diagnostic dataset. The 2nd International Conference on Machine Learning and Soft Computing (ICMLSC '18): Proceedings. 2018: 1-5.
  • [27] Salem N, Hussein S. Data dimensional reduction and principal components analysis. Procedia Computer Science. 2019; 161: 292-299.
  • [28] Marcoulides KM, Raykov T. Evaluation of Variance Inflation Factors in Regression Models Using Latent Variable Modeling Methods. Educational and Psychological Measurement. 2019; 79: 874-882.
  • [29] Çetin Taş İ. An Applied Analysis of Breast Cancer Diagnosis By Using Different Methods. Abant Sağlık Bilimleri ve Teknolojileri Dergisi. 2022; 2: 72-87.
  • [30] Howley T, Madden MG, O'Connell M, Ryder AG. The Effect of Principal Component Analysis on Machine Learning Accuracy with High Dimensional Spectral Data. Knowledge-Based Systems. 2006; 19: 209-222.
  • [31] Parlak, B, Uysal, AK. On feature weighting and selection for medical document classification. In Developments and advances in intelligent systems and applications. Springer International Publishing. 2018; 718: 269-282.
  • [32] Parlak, B, Uysal, AK. On classification of abstracts obtained from medical journals. Journal of Information Science. 2020; 46: 648-663.
  • [33] Subho RH, Chowdhury R, Chaki D, Islam S, Rahman M. A Univariate Feature Selection Approach for Finding Key Factors of Restaurant Business. IEEE Region 10 Symposium: Proceedings. 2019: 605-610.
  • [34] Niquini FGF, Branches AMB, Costa JFCL, Moreira GC, Schneider CL, Araújo FC, Capponi LN. Recursive Feature Elimination and Neural Networks Applied to the Forecast of Mass and Metallurgical Recoveries in A Brazilian Phosphate Mine. Minerals. 2023; 13: 748-759.
  • [35] Hu LY, Huang MW, Ke SW et al. The distance function effect on k-nearest neighbor classification for medical datasets. SpringerPlus. 2016; 5: 1-9.
  • [36] Anand MV, KiranBala B, Srividhya SR, Kavitha C, Younus M, Rahman H. Gaussian Naïve Bayes Algorithm: A Reliable Technique Involved in the Assortment of the Segregation in Cancer. Mobile Information Systems. 2022; 2022: 1-7.
  • [37] Song YY, Lu Y. Decision tree methods: applications for classification and prediction. Shanghai Arch Psychiatry. 2015; 27: 130-135.
  • [38] Cervantes J, Garcia-Lamont F, Rodríguez-Mazahua L, Lopez A. A comprehensive survey on support vector machine classification: Applications, challenges and trends. Neurocomputing. 2020; 408: 189-215.
  • [39] Breiman L. Random Forests. Machine Learning. 2001; 45: 5-32.
  • [40] Şahin H, İçen D. Application of Random Forest Algorithm for the Prediction of Online Food Delivery Service Delay. Turkish Journal of Forecasting. 2021; 5: 1-11.
  • [41] Saygılı A. Classification and Diagnostic Prediction of Breast Cancers via Different Classifiers. International Scientific and Vocational Studies Journal. 2018; 2: 48-56.
  • [42] Powers, D, Powers A. Evaluation: From precision, recall and F-measure to ROC, informedness, markedness & correlation. Journal of Machine Learning Technologies. 2011; 2: 2229-3981.
  • [43] Sokolova, M, Japkowicz, N, Szpakowicz, S. Beyond Accuracy, F-Score and ROC: A Family of Discriminant Measures for Performance Evaluation. AI 2006: Advances in Artificial Intelligence. Lecture Notes in Computer Science. 2006; 4304: 1015-1021.
  • [44] Rasool A, Bunterngchit C, Tiejian L, Islam MR, Qu Q, Jiang Q. Improved Machine Learning-Based Predictive Models for Breast Cancer Diagnosis. International Journal of Environmental Research and Public Health. 2022; 19: 1-19.
  • [45] Aslam FA, Mohammed HN, Lokhande PS. Efficient Way Of Web Development Using Python And Flask, International Journal of Advanced Research in Computer Science. 2015; 6: 54-57.
  • [46] Türker A, Bülbül YE, Öksüz A, Yurdabak Karaca G. Kanser Teşhis ve Tedavisinde Nano/mikromotor Teknolojisi. Gazi University Journal of Science Part C: Design and Technology. 2023; 11: 652-672.
Toplam 46 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Bilgi Sistemleri Geliştirme Metodolojileri ve Uygulamaları, Karar Desteği ve Grup Destek Sistemleri
Bölüm Tasarım ve Teknoloji
Yazarlar

Cihan Akyel 0000-0003-1792-8254

Hüseyin Polat 0000-0003-4128-2625

Bünyamin Ciylan 0000-0002-6193-2245

Erken Görünüm Tarihi 13 Haziran 2024
Yayımlanma Tarihi 29 Haziran 2024
Gönderilme Tarihi 7 Aralık 2023
Kabul Tarihi 1 Mart 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 12 Sayı: 2

Kaynak Göster

APA Akyel, C., Polat, H., & Ciylan, B. (2024). Öznitelik Seçimi ile Desteklenen Makine Öğrenmesine Dayalı Göğüs Kanserinin Erken Tespiti ve Teşhisi. Gazi University Journal of Science Part C: Design and Technology, 12(2), 675-690. https://doi.org/10.29109/gujsc.1400991

                                     16168      16167     16166     21432        logo.png


    e-ISSN:2147-9526