Araştırma Makalesi
BibTex RIS Kaynak Göster

CO2 Emission Inventory in Türkiye and Estimation of CO2 Concentration over Türkiye by Using Dispersion Modelling

Yıl 2025, Cilt: 13 Sayı: 1, 308 - 329, 24.03.2025
https://doi.org/10.29109/gujsc.1590432

Öz

The density and composition of the atmosphere strongly influence the temperature of the Earth. The release of greenhouse gases has changed the radiative balance of the atmosphere and trapped some of the outgoing energy. The most important greenhouse gas (GHG) is carbon dioxide (CO2). CO2 concentration in the atmosphere is increasing continuously and will keep growing. The rise in the concentration of CO2 is due to the combustion of fossil fuels for energy generation. It is estimated that CO2 concentration is responsible for about 60% of the greenhouse effect.

The main scope of this study is to assess the results of CO2 inventories and dispersion modelling for the period 1990 – 2003 in province and district bases. The collected data from households, transportation, industry, and thermal power plants were used to estimate district base emissions for CO2. However, after the year 2004, the collected data is not permitted to estimate ground-level CO2 concentrations due to the confidentiality of many data. Therefore, the projection of the concentration study has been done only for the year 2004. However, the emission inventory has been projected until the year 2010. After this year, the province and district base projections contain lots of errors and uncertainties. The economic conditions, industrial development, increasing number of thermal power plants, and changing number of households create many errors and uncertainties besides the collected activity data. In addition, the data including households, industrial activities, and thermal power plants is confidential and requires many agreements by governmental organizations. For that reason, the study period is limited to 1990 and 2003. However, the selected period is very important for the base year evaluation. Türkiye has no base year in the presence of the Convention and Protocol. The inventory for the years between 1990 and 2003 is also very important in terms of evaluating industrial development in Turkey. During this time, there was a very critical improvement in the emission of CO2 depending on the Turkish economy. The fluctuation of CO2 emission has shown a great variety, and this study has considered the fluctuations under the economic conditions of Türkiye during this period.

Following the emission inventory, the dispersion of CO2 was studied by using the USEPA’s Industrial Source Complex Long Term Model, Version 3 ISCLT3. Based on the results of modeling calculations, the ground-level CO2 concentration maps were prepared and superimposed on the geographical map of Türkiye by using Geographic Information System (GIS) techniques. GIS techniques were used to map all the information.

The results of the CO2 emission inventory conducted in this study between 1990 and 2003 showed that the CO2 emission in 1990 was 142.45 million tones/year and it is noteworthy that the year 2000 saw the highest recorded emissions, amounting to 207.97 million tones/year. The territorial distributions of CO2 emission have shown that the Marmara Region emits the highest regional CO2 emission throughout the years with a mean value of 54.76 million tones/year. It was also concluded that the Aegean and Marmara Regions are responsible for half of the CO2 emission of Türkiye. The highest ground-level CO2 concentrations were always obtained in the Marmara Region. This condition will still be maintained in 2024.

Etik Beyan

The author of this article declares that the materials and methods they use in their work do not require ethical committee approval and/or legal-specific permission.

Proje Numarası

-

Kaynakça

  • [1] Hummel, J.R., Reck, R.A. Carbon dioxide and climate: the effects of water transport in radiative-convective models. J. Geophys. Res. 86. 1981; 12035–12038.
  • [2] Herzog, H., Carbon Dioxide Capture and Storage in the Economics and Politics of Climate Change. 2015.
  • [3] Alcamo, J. Stabilizing greenhouse gases: global and regional consequences. Clim. Chang. Res. Eval. policy Implic. Proc. Int. Clim. Chang. Conf. Maastricht, 1995; Two vols 135–149.
  • [4] IPCC. Revised 1996 Intergovernmental Panel on Climate Change Guidelines for National Greenhouse Gas Inventories. 1996; Volume 3, 1- 145.
  • [5] IPCC. 2006 Intergovernmental Panel on Climate Change Guidelines for National Greenhouse Gas Inventories. 2006; Volume 2, 2.1-2.45
  • [6] Xu, Y., Cui, G. Influence of spectral characteristics of the Earth’s surface radiation on the greenhouse effect: Principles and mechanisms. Atmos. Environ. 2021; 244.
  • [7] Sakata, S., A. Aklilu and R. Pizarro. "Greenhouse gas emissions data: Concepts and data availability", OECD Statistics Working Papers, No. 2024/03, OECD Publishing, Paris.
  • [8] Soon, W., Baliunas, S.L., Robinson, A.B., Robinson, Z.W. Environmental effects of increased atmospheric carbon dioxide. Energy Environ. 1999; 10, 439–468.
  • [9] IPCC. Climate Change 2022 – Impacts, Adaptation and Vulnerability, Climate Change 2022 – Impacts, Adaptation and Vulnerability.
  • [10] Holmén, K. The Global Carbon Cycle. Int. Geophys. 1992; 50, 239–262.
  • [11] Mutiibwa, D., Strachan, S., Albright, T. Land Surface Temperature and Surface Air Temperature in Complex Terrain. IEEE Journal. 2015; 8, 4762–4774.
  • [12] Friedlingstein, P. Carbon cycle feedback and future climate change. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2015.
  • [13] Balch, J.K., Nagy, R.C., Archibald, S., Bowman, D.M.J.S., Moritz, M.A., Roos, C.I., Scott, A.C., Williamson, G.J. Global combustion: The connection between fossil fuel and biomass burning emissions (1997–2010). Philos. Trans. R. Soc. B Biol. Sci. 2016; 371. https://doi.org/10.1098/rstb.2015.0177
  • [14] Borges, A. V., Delille, B., Frankignoulle, M. Budgeting sinks and sources of CO2 in the coastal ocean: Diversity of ecosystem counts. Geophys. Res. Lett. 2005; 32, 1–4.
  • [15] Schimel, D.S., House, J.I., etc. all. Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature 414. 2001; 169–172.
  • [16] Kasting, J.F. The Carbon Cycle, Climate, and the Long-Term Effects of Fossil Fuel Burning. web address: http://www.atmo.arizona.edu/students/courselinks/fall0/atmo551a/ pdf/CarbonCycle.html (date: 12.10.24).
  • [17] IEA. International Energy Agency - CO2 Emissions from Fueş Combustion (1971-2003). 2005 Edition – OECD/IEA. II. 74 – II.386.
  • [18] Janerio, R. De. United Nations Conference on Environment & Development Rio de Janerio , Brazil , 3 to 14 June 1992. Reproduction 351. ISBN: 9211005094.
  • [19] MOEF. Information Concerning To The Multilateral Environment Agreements, Which Turkey Is A Party To. Ministry of Environment, Urbanization and Climate Change. 2024; web address: https://ab.csb.gov.tr/en/agreements-i-100215 (date: 18.07.24).
  • [20] France, P.B., Uk, N.P.G., Marengo, J.A., Brazil, O. Understanding and Attributing Climate Change. Change. 2007.
  • [21] Sinha, U.K. Climate change: Process and politics. Strateg. Anal. 2010; 34, 858–871. https://doi.org/10.1080/09700161.2010.512482
  • [22] İncecik S., Yardım P., Topçu S. Kyoto Protocol and Critical Review of Greenhouse Gas Emissions in Turkey. Proceedings of Second International Symposium on Air Quality Management at Urban, Regional and Global Scales. (25-28 September 2001, İstanbul – Turkey). 2001; 538 - 543.
  • [23] National Climate Policies and the Kyoto Protocol, National Climate Policies and the Kyoto Protocol. OECD. 1999; https://doi.org/10.1787/9789264174450-en
  • [24] F., Alkan-olsson, J. Turkey’s Signature of the Kyoto Protocol. İstanbul Üniversitesi Siyasal Bilgiler Fakültesi Derg. 2013; İ.Ü.S., Dergisi.
  • [25] DOCC, Kyoto Protocol. Ministry of Environment, Urbanization and Climate Change – Directorate of Climate Change. 2024; Web address: https://iklim.gov.tr/en/kyoto-protocol-i-118 (date: 22.08.24).
  • [26] U.S. EPA. User Guide for the Industrial Source Complex (Isc3) Dispersion Models. Volume I-User Instructions; Volume II-Description of Model Algorithms. 1995; Vol I.p.1.1 –H.1; Vol II.p.1.1-3.1.
  • [27] Leake, C., Malczewski, J. GIS and Multicriteria Decision Analysis. J. Oper. Res. 2000; Soc. 51, 247. https://doi.org/10.2307 /254268.
  • [28] Black, F.A., MacDonald, B.H., Black, J.M.W. Geographic Information Systems: A New Research Method for Book History. B. Hist. 1998; 1, 11–31. https://doi.org/10.1353 /bh.1998.0001
  • [28] Kirby, R.S., Delmelle, E., Eberth, J.M. Advances in spatial epidemiology and geographic information systems. Ann. Epidemiol. 2017 27, 1–9. https://doi.org /10.1016/j.annepidem.2016.12.001
  • [29] SIS. The number of manufacturing industries according to the size of establishments between 1990 and 2003 in each district. Industrial Statistics Division in State Institute of Statistics database, Republic of Turkey, Prime Ministry. 2004.
  • [30] SIS. Energy Consumption in the Manufacturing Industry (1992) - (SIS-State Institute of Statistics), Republic of Turkey, Prime Ministry. 1992; (book). p.13.
  • [31] SIS. Energy Consumption in the Manufacturing Industry - (SIS-State Institute of Statistics), Republic of Turkey, Prime Ministry. 1995; (book). p.11.
  • [32] SIS. Energy Consumption in the Manufacturing Industry - (SIS-State Institute of Statistics), Republic of Turkey, Prime Ministry, 1996; (book). p.19.
  • [33] SIS. Energy Consumption in the Manufacturing Industry - (SIS-State Institute of Statistics), Republic of Turkey, Prime Ministry, 1997; (book). p.23.
  • [34] SIS. Energy Consumption in the Manufacturing Industry - (SIS-State Institute of Statistics), Republic of Turkey, Prime Ministry, 1998; (book). p.23.
  • [35] SIS. Energy Consumption in the Manufacturing Industry (1999-2001) - (SIS-State Institute of Statistics), Republic of Turkey, Prime Ministry, 2001; (book). p.28.
  • [36] SIS. The Fuel Consumption in the Manufacturing Industries of each Province. Mining and Energy Statistics Division in State Institute of Statistics’ database, Prime Ministry Republic of Turkey. 2001.
  • [37] MOE. The annual Energy and Petroleum Balance Tables - 1990-2010, Ministry of Energy. 2003; Web address: https://enerji .gov.tr/eigm-raporlari (date: 05.06.2001)
  • [38] Snyder, J.P. Labelling projections on published maps. Am. Cartogr. 1987; 14, 21–27.
  • [39] IPCC. Conceptual Basis for Uncertainty Analysis. IPCC Good Pract. Guid. Uncertain. Manag. Natl. Greenh. Gas Invent. 2000; 2.8 – 2.94.
  • [40] Robinson, J.M. On uncertainty in the computation of global emissions from biomass burning. Clim. Change. 1989; 14, 243–261. https://doi.org/10.1007/BF00134965
  • [41] de Nevers D. N. Air Pollution Control Engineering, USA, McGraw Hill,Inc. 1995; 105-125.
  • [42] EPA. Air Quality Models. U.S. Environmental Protection Agency. 2024; Web address: https://www.epa.gov/scram/air-quality-models. (date: 10.10.24).
  • [43] Delfiner P., Delhomme J.P. Optimum Interpolation by Kriging. In: Davis, J.C., McCullagh, M.J.(Eds.), Display and Analysis of Spatial Data.Wiley, London. 1975; 94 - 114.
  • [44] Dlugokency E.J., Steele L.P., LangP.M., Mesarie K.A.M. The Growth Rate and Distribution of Atmospheric CH4. J.Geophys.Res., 1994; 99, 17021-17043.
  • [45] Draper, N.R., Smith, H. Applied regression analysis, Applied Regression Analysis. https://doi.org/10.1002/9781118625590. 2014; 1-35.
  • [46] Wu, J. Advances in K-means Clustering. Adv. K-means Clust. A Data Min. Think.2012; 1 - 175.
  • [47] Douglas, G.B., Thomas, A.W. Cronbach’s alpha reliability: Interval estimation, hypothesis testing, and sample size planning. J. Organ. Behav. 2014; 36, 1–15.
  • [48] Time Series Analysis - Data, Methods, and Applications. Time Series Analysis - Data, Methods, and Applications. https://doi.org /10.5772/intechopen.78491. 2019.
  • [49] SIS. Census of Population, Social and Economic Characteristics of Population – (SIS - State Institute of Statistics), Republic of Turkey, Prime Ministry, 2000 (book), 113-133.
  • [50] Sunay, N., Turgut, E.T. Eklemeli İmalat Teknolojilerinin Havacılık Sektöründe Enerji Verimliliğini Artırma ve Emisyon Azaltma Potansiyeli. GÜ Fen Bil. Der. Part C. Tas. Tek., 2024; 12.2, p. 548-566. https://doi.org /10.29109/gujsc.1437824
  • [51] Yıldız, C. Binalarda Enerji Verimliliğinde Son Gelişmeler: Türkiye Örneği. GÜ Fen Bil. Der. Part C. Tas. Tek., 12.1, 2024; 176-213. https://doi.org/10.29109/gujsc. 1293759.

Türkiye’de CO2 Emisyon Envanteri ve CO2 Konsantrasyonunun Dağılım Modeli Kullanılarak Hesaplanması

Yıl 2025, Cilt: 13 Sayı: 1, 308 - 329, 24.03.2025
https://doi.org/10.29109/gujsc.1590432

Öz

Atmosferin yoğunluğu ve bileşiği Dünya sıcaklığını güçlü bir şekilde etkilemektedir. Sera gazı salınımı atmosfer dengesini değiştirerek ve enerjinin bir kısmını absorbe ederek hapsetmiştir. En önemli sera gazı (CO2)karbondioksit’tir. Atmosferdeki CO2 konsantrasyonu sürekli artmaktadır ve artmaya devam edecektir. CO2 konsantrasyonundaki artışın en öenmli sebebi enerji üretimi için fosil yakıtların kullanılmasıdır. Atmosferdeki CO2 sera etkisinin yaklaşık %60'ından sorumlu olduğu tahmin edilen en önemli direk seragazıdır.
Bu çalışmanın temel kapsamı, 1990 - 2003 dönemi için il ve ilçe bazında CO2 envanterleri oluşturmak ve dağılım modellemesinin sonuçlarını elde ederek, değerlendirmektir. Hane halkı, ulaşım, sanayi ve termik santrallerden toplanan veriler CO2 için, ilçe düzeyinde emisyonları tahmin etmek için kullanılmıştır. Ancak 2004 yılından sonra elde edilen veriler çalışmaları devam ettirmek için yerli değildir. Özellikle veri gizliliği nedeniyle yer seviyesindeki CO2 konsantrasyonları tahmin edilememiştir. Bu nedenle, konsantrasyon çalışmasının projeksiyonu yalnızca 2004 yılı için yapılmıştır. Ancak emisyon envanteri 2010 yılına kadar tahmin nedilmiştir. Bu yıldan sonra, il ve ilçe bazlı projeksiyonlar çok sayıda hata ve belirsizlik içermektedir. Toplanan aktivite verilerinin yanı sıra, ekonomik koşullar, endüstriyel gelişim, termik santral sayısının artması ve hane sayısının değişmesi çok sayıda hata ve belirsizlik yaratmıştır. Ayrıca, hane halkı, endüstriyel faaliyetler ve termik santralleri içeren detay veriler gizlidir ve devlet kurumları ile anlaşma yapılmasını gerektirmekte ve kişisel hakların korunumu gereği çalışma detaylandırılamamaktadır. Bu nedenle, çalışma dönemi 1990 ve 2003 ile sınırlıdır. Ancak, seçilen dönem baz yılının dikkate alınması için çok önemlidir. Türkiye'nin Sözleşme ve Kyoto Protokolü kapsamında baz yılı yoktur. 1990-2003 yılları arasındaki yıllara ait envanter de Türkiye'deki endüstriyel gelişim dikkate alındığında bu zaman dilimi çok önemlidir. Bu süre zarfında, Türkiye ekonomisine bağlı olarak CO2 emisyonunda çok kritik bir artma eğilimi gözlemlenmiştir. CO2 emisyon eğilim analizi farklılık göstermekle birlikte genel eğilimi artış yönündedir. Bu çalışma ile Türkiye'nin ekonomik koşullarındaki dalgalanma ile emisyon envanteri arasında bir ilişki olduğu nettir.

Emisyon envanteri kullanılarak, Ülkemizdeki CO2 dağılımı, US Çevre Koruma Ajansı (EPA) tarafından geliştirilen Endüstriyel Kaynak Kompleksi Uzun Vadeli Modeli, Sürüm 3 ISCLT3 kullanılarak hesaplanmıştır. Modelleme hesaplamalarının sonuçlarına dayanarak, yer seviyesi CO2 konsantrasyon haritaları hazırlanmış ve Coğrafi Bilgi Sistemi (CBS) teknikleri kullanılarak Türkiye'nin coğrafi haritası üzerine veriler işlenerek kirletici kontur haritaları oluşturulmuştur. Tüm bilgileri haritalamak için CBS teknikleri kullanılmıştır.

Bu çalışmada 1990-2003 yılları arasında yürütülen CO2 emisyon envanterinin sonuçları, 1990 yılında CO2 emisyonunun 142.45 milyon ton/yıl olduğunu ve en yüksek emisyonun 2000 yılında 207.97 milyon ton/yıl değeriyle hesaplandığını göstermiştir. CO2 emisyonlarının bölgesel dağılımı, Marmara Bölgesi'nin yıllar boyunca ortalama 54.76 milyon ton/yıl değeri ile en yüksek bölgesel CO2 emisyonunu yaydığını göstermiştir. Ayrıca, Marmara ve Ege Bölgelerinin Türkiye'nin CO2 emisyonunun yarısını yarattığı da sonucuna da ulaşılmıştır. En yüksek yer seviyesi CO2 konsantrasyonları her zaman Marmara Bölgesi'nde elde edilmiştir. Bu durum 2024 yılında da devam edecektir.

Proje Numarası

-

Kaynakça

  • [1] Hummel, J.R., Reck, R.A. Carbon dioxide and climate: the effects of water transport in radiative-convective models. J. Geophys. Res. 86. 1981; 12035–12038.
  • [2] Herzog, H., Carbon Dioxide Capture and Storage in the Economics and Politics of Climate Change. 2015.
  • [3] Alcamo, J. Stabilizing greenhouse gases: global and regional consequences. Clim. Chang. Res. Eval. policy Implic. Proc. Int. Clim. Chang. Conf. Maastricht, 1995; Two vols 135–149.
  • [4] IPCC. Revised 1996 Intergovernmental Panel on Climate Change Guidelines for National Greenhouse Gas Inventories. 1996; Volume 3, 1- 145.
  • [5] IPCC. 2006 Intergovernmental Panel on Climate Change Guidelines for National Greenhouse Gas Inventories. 2006; Volume 2, 2.1-2.45
  • [6] Xu, Y., Cui, G. Influence of spectral characteristics of the Earth’s surface radiation on the greenhouse effect: Principles and mechanisms. Atmos. Environ. 2021; 244.
  • [7] Sakata, S., A. Aklilu and R. Pizarro. "Greenhouse gas emissions data: Concepts and data availability", OECD Statistics Working Papers, No. 2024/03, OECD Publishing, Paris.
  • [8] Soon, W., Baliunas, S.L., Robinson, A.B., Robinson, Z.W. Environmental effects of increased atmospheric carbon dioxide. Energy Environ. 1999; 10, 439–468.
  • [9] IPCC. Climate Change 2022 – Impacts, Adaptation and Vulnerability, Climate Change 2022 – Impacts, Adaptation and Vulnerability.
  • [10] Holmén, K. The Global Carbon Cycle. Int. Geophys. 1992; 50, 239–262.
  • [11] Mutiibwa, D., Strachan, S., Albright, T. Land Surface Temperature and Surface Air Temperature in Complex Terrain. IEEE Journal. 2015; 8, 4762–4774.
  • [12] Friedlingstein, P. Carbon cycle feedback and future climate change. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2015.
  • [13] Balch, J.K., Nagy, R.C., Archibald, S., Bowman, D.M.J.S., Moritz, M.A., Roos, C.I., Scott, A.C., Williamson, G.J. Global combustion: The connection between fossil fuel and biomass burning emissions (1997–2010). Philos. Trans. R. Soc. B Biol. Sci. 2016; 371. https://doi.org/10.1098/rstb.2015.0177
  • [14] Borges, A. V., Delille, B., Frankignoulle, M. Budgeting sinks and sources of CO2 in the coastal ocean: Diversity of ecosystem counts. Geophys. Res. Lett. 2005; 32, 1–4.
  • [15] Schimel, D.S., House, J.I., etc. all. Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature 414. 2001; 169–172.
  • [16] Kasting, J.F. The Carbon Cycle, Climate, and the Long-Term Effects of Fossil Fuel Burning. web address: http://www.atmo.arizona.edu/students/courselinks/fall0/atmo551a/ pdf/CarbonCycle.html (date: 12.10.24).
  • [17] IEA. International Energy Agency - CO2 Emissions from Fueş Combustion (1971-2003). 2005 Edition – OECD/IEA. II. 74 – II.386.
  • [18] Janerio, R. De. United Nations Conference on Environment & Development Rio de Janerio , Brazil , 3 to 14 June 1992. Reproduction 351. ISBN: 9211005094.
  • [19] MOEF. Information Concerning To The Multilateral Environment Agreements, Which Turkey Is A Party To. Ministry of Environment, Urbanization and Climate Change. 2024; web address: https://ab.csb.gov.tr/en/agreements-i-100215 (date: 18.07.24).
  • [20] France, P.B., Uk, N.P.G., Marengo, J.A., Brazil, O. Understanding and Attributing Climate Change. Change. 2007.
  • [21] Sinha, U.K. Climate change: Process and politics. Strateg. Anal. 2010; 34, 858–871. https://doi.org/10.1080/09700161.2010.512482
  • [22] İncecik S., Yardım P., Topçu S. Kyoto Protocol and Critical Review of Greenhouse Gas Emissions in Turkey. Proceedings of Second International Symposium on Air Quality Management at Urban, Regional and Global Scales. (25-28 September 2001, İstanbul – Turkey). 2001; 538 - 543.
  • [23] National Climate Policies and the Kyoto Protocol, National Climate Policies and the Kyoto Protocol. OECD. 1999; https://doi.org/10.1787/9789264174450-en
  • [24] F., Alkan-olsson, J. Turkey’s Signature of the Kyoto Protocol. İstanbul Üniversitesi Siyasal Bilgiler Fakültesi Derg. 2013; İ.Ü.S., Dergisi.
  • [25] DOCC, Kyoto Protocol. Ministry of Environment, Urbanization and Climate Change – Directorate of Climate Change. 2024; Web address: https://iklim.gov.tr/en/kyoto-protocol-i-118 (date: 22.08.24).
  • [26] U.S. EPA. User Guide for the Industrial Source Complex (Isc3) Dispersion Models. Volume I-User Instructions; Volume II-Description of Model Algorithms. 1995; Vol I.p.1.1 –H.1; Vol II.p.1.1-3.1.
  • [27] Leake, C., Malczewski, J. GIS and Multicriteria Decision Analysis. J. Oper. Res. 2000; Soc. 51, 247. https://doi.org/10.2307 /254268.
  • [28] Black, F.A., MacDonald, B.H., Black, J.M.W. Geographic Information Systems: A New Research Method for Book History. B. Hist. 1998; 1, 11–31. https://doi.org/10.1353 /bh.1998.0001
  • [28] Kirby, R.S., Delmelle, E., Eberth, J.M. Advances in spatial epidemiology and geographic information systems. Ann. Epidemiol. 2017 27, 1–9. https://doi.org /10.1016/j.annepidem.2016.12.001
  • [29] SIS. The number of manufacturing industries according to the size of establishments between 1990 and 2003 in each district. Industrial Statistics Division in State Institute of Statistics database, Republic of Turkey, Prime Ministry. 2004.
  • [30] SIS. Energy Consumption in the Manufacturing Industry (1992) - (SIS-State Institute of Statistics), Republic of Turkey, Prime Ministry. 1992; (book). p.13.
  • [31] SIS. Energy Consumption in the Manufacturing Industry - (SIS-State Institute of Statistics), Republic of Turkey, Prime Ministry. 1995; (book). p.11.
  • [32] SIS. Energy Consumption in the Manufacturing Industry - (SIS-State Institute of Statistics), Republic of Turkey, Prime Ministry, 1996; (book). p.19.
  • [33] SIS. Energy Consumption in the Manufacturing Industry - (SIS-State Institute of Statistics), Republic of Turkey, Prime Ministry, 1997; (book). p.23.
  • [34] SIS. Energy Consumption in the Manufacturing Industry - (SIS-State Institute of Statistics), Republic of Turkey, Prime Ministry, 1998; (book). p.23.
  • [35] SIS. Energy Consumption in the Manufacturing Industry (1999-2001) - (SIS-State Institute of Statistics), Republic of Turkey, Prime Ministry, 2001; (book). p.28.
  • [36] SIS. The Fuel Consumption in the Manufacturing Industries of each Province. Mining and Energy Statistics Division in State Institute of Statistics’ database, Prime Ministry Republic of Turkey. 2001.
  • [37] MOE. The annual Energy and Petroleum Balance Tables - 1990-2010, Ministry of Energy. 2003; Web address: https://enerji .gov.tr/eigm-raporlari (date: 05.06.2001)
  • [38] Snyder, J.P. Labelling projections on published maps. Am. Cartogr. 1987; 14, 21–27.
  • [39] IPCC. Conceptual Basis for Uncertainty Analysis. IPCC Good Pract. Guid. Uncertain. Manag. Natl. Greenh. Gas Invent. 2000; 2.8 – 2.94.
  • [40] Robinson, J.M. On uncertainty in the computation of global emissions from biomass burning. Clim. Change. 1989; 14, 243–261. https://doi.org/10.1007/BF00134965
  • [41] de Nevers D. N. Air Pollution Control Engineering, USA, McGraw Hill,Inc. 1995; 105-125.
  • [42] EPA. Air Quality Models. U.S. Environmental Protection Agency. 2024; Web address: https://www.epa.gov/scram/air-quality-models. (date: 10.10.24).
  • [43] Delfiner P., Delhomme J.P. Optimum Interpolation by Kriging. In: Davis, J.C., McCullagh, M.J.(Eds.), Display and Analysis of Spatial Data.Wiley, London. 1975; 94 - 114.
  • [44] Dlugokency E.J., Steele L.P., LangP.M., Mesarie K.A.M. The Growth Rate and Distribution of Atmospheric CH4. J.Geophys.Res., 1994; 99, 17021-17043.
  • [45] Draper, N.R., Smith, H. Applied regression analysis, Applied Regression Analysis. https://doi.org/10.1002/9781118625590. 2014; 1-35.
  • [46] Wu, J. Advances in K-means Clustering. Adv. K-means Clust. A Data Min. Think.2012; 1 - 175.
  • [47] Douglas, G.B., Thomas, A.W. Cronbach’s alpha reliability: Interval estimation, hypothesis testing, and sample size planning. J. Organ. Behav. 2014; 36, 1–15.
  • [48] Time Series Analysis - Data, Methods, and Applications. Time Series Analysis - Data, Methods, and Applications. https://doi.org /10.5772/intechopen.78491. 2019.
  • [49] SIS. Census of Population, Social and Economic Characteristics of Population – (SIS - State Institute of Statistics), Republic of Turkey, Prime Ministry, 2000 (book), 113-133.
  • [50] Sunay, N., Turgut, E.T. Eklemeli İmalat Teknolojilerinin Havacılık Sektöründe Enerji Verimliliğini Artırma ve Emisyon Azaltma Potansiyeli. GÜ Fen Bil. Der. Part C. Tas. Tek., 2024; 12.2, p. 548-566. https://doi.org /10.29109/gujsc.1437824
  • [51] Yıldız, C. Binalarda Enerji Verimliliğinde Son Gelişmeler: Türkiye Örneği. GÜ Fen Bil. Der. Part C. Tas. Tek., 12.1, 2024; 176-213. https://doi.org/10.29109/gujsc. 1293759.
Toplam 52 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Hava Kirliliği Modellemesi ve Kontrolü, Enerji
Bölüm Tasarım ve Teknoloji
Yazarlar

Ali Can 0000-0003-2285-3680

Aysel T. Atimtay 0000-0001-7012-308X

Turgut Tokdemir 0000-0002-4163-3045

Proje Numarası -
Erken Görünüm Tarihi 6 Mart 2025
Yayımlanma Tarihi 24 Mart 2025
Gönderilme Tarihi 24 Kasım 2024
Kabul Tarihi 24 Aralık 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 13 Sayı: 1

Kaynak Göster

APA Can, A., Atimtay, A. T., & Tokdemir, T. (2025). CO2 Emission Inventory in Türkiye and Estimation of CO2 Concentration over Türkiye by Using Dispersion Modelling. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 13(1), 308-329. https://doi.org/10.29109/gujsc.1590432

                                     16168      16167     16166     21432        logo.png   


    e-ISSN:2147-9526