Araştırma Makalesi
BibTex RIS Kaynak Göster

Katı Oksit Elektrolizör Hücrelerinin Performansı Üzerindeki Kanal Geometrisi ve Çalışma Sıcaklığının Etkisi: Düzgün ve Düzgün Olmayan Sıcaklık Etkilerinin İncelenmesi

Yıl 2025, Cilt: 13 Sayı: 1, 200 - 218, 24.03.2025
https://doi.org/10.29109/gujsc.1635684

Öz

Bu çalışma, verimli hidrojen üretimi için umut verici bir teknoloji olan Katı Oksit Elektrolizör Hücrelerinin (SOEC) performansı üzerindeki kanal geometrisi ve çalışma sıcaklığının etkilerini incelemektedir. Hesaplamalı simülasyonlar ve deneysel analizler yoluyla, farklı kanal tasarımlarının — dikdörtgen, üçgen ve yarım daire — sistem performansı üzerindeki etkisi araştırılmaktadır. Geometriler arasında dikdörtgen kanallar, diğerlerine kıyasla %10 oranında daha yüksek bir performans sergileyerek en yüksek verimliliği elde etmektedir. Ayrıca, çalışma sıcaklığının 1073 K'den 1273 K'ye yükseltilmesi, reaksiyon kinetiğini hızlandırarak %15 oranında bir verimlilik artışı sağlamaktadır. Çalışma, hem kanal tasarımının hem de sıcaklık optimizasyonunun, hidrojen üretiminin maksimize edilmesi açısından kritik öneme sahip olduğunu belirlemektedir. Ayrıca, araştırma, kullanılan küçük ölçekli yakıt hücresi yapılandırmasında düzensiz sıcaklık dağılımının performans üzerinde minimal bir etkisi olduğunu ortaya koymaktadır. Bu bulgular, SOEC tasarımında geometri ve işletme koşulları arasındaki etkileşimin anlaşılmasının önemini vurgulamakta ve sürdürülebilir hidrojen üretim teknolojilerinin gelişimine katkı sağlamaktadır.

Kaynakça

  • [1] Hu K, Fang J, Ai X, Huang D, Zhong Z, Yang X, Wang L. Comparative study of alkaline water electrolysis, proton exchange membrane water electrolysis and solid oxide electrolysis through multiphysics modeling. Applied Energy. 2022; 312: 118788.
  • [2] Yelegen N, Kümük B, Kaplan RN, İlbaş M, Kaplan Y. Numerical and experimental studies on unitized regenerative proton exchange membrane fuel cell. International Journal of Hydrogen Energy. 2023; 48(35): 12969–12981.
  • [3] Ilbas M, Kumuk O, Karyeyen S. Modelling of the gas-turbine colorless distributed combustion: An application to hydrogen enriched – kerosene fuel. International Journal of Hydrogen Energy. 2022; 47(24): 12354–12364.
  • [4] Kumuk O, Ilbas M. Comparative analysis of ammonia/hydrogen fuel blends combustion in a high swirl gas turbine combustor with different cooling angles. International Journal of Hydrogen Energy. 2024; 52(B): 1404-1418.
  • [5] Henke M, Willich C, Kallo J, Friedrich KA. Theoretical study on pressurized operation of solid oxide electrolysis cells.International Journal of Hydrogen Energy. 2014; 39(24): 12434-12439.
  • [6] Alzahrani AA, Dincer I. Modeling and performance optimization of a solid oxide electrolysis system for hydrogen production. Applied Energy. 2018; 225: 471-485.
  • [7] Kim S-D, Seo D-W, Dorai AK, Woo S-K. The effect of gas compositions on the performance and durability of solid oxide electrolysis cells. International Journal of Hydrogen Energy. 2013; 38(16): 6569-6576.
  • [8] Chin W, Huang J, Liu Y, Wu Y, Lee Y. Correlation between the thickness of NiFe2O4 and hydrogen production performance for solid oxide electrolysis cells. International Journal of Hydrogen Energy. 2024; 52(B): 994-1001.
  • [9] Kim S-D, Yu J-H, Seo D-W, Han I-S, Woo S-K. Hydrogen production performance of 3-cell flat-tubular solid oxide electrolysis stack. International Journal of Hydrogen Energy. 2012; 37(1): 78-83.
  • [10] Wang Y, Wu C, Zu B, Han M, Du Q, Ni M, Jiao K. Ni migration of Ni-YSZ electrode in solid oxide electrolysis cell: An integrated model study. Journal of Power Sources. 2021; 516: 230660.
  • [11] Ni M, Leung MKH, Leung DYC. Parametric study of solid oxide steam electrolyzer for hydrogen production. International Journal of Hydrogen Energy. 2007; 32: 2305–2313.
  • [12] Chen H, Wang J, Xu X. Parametric Study of Operating Conditions on Performances of a Solid Oxide Electrolysis Cell. Journal of Thermal Science. 2023; 32: 1973-1988.
  • [13] Wang Z, Mori M, Araki T. Steam electrolysis performance of intermediate-temperature solid oxide electrolysis cell and efficiency of hydrogen production system at 300Nm3h-1. International Journal of Hydrogen Energy. 2010; 35(10): 4451–4458.
  • [14] Srinivas S, Dhanushkodi SR, Chidambaram RK, Skrzyniowska D, Korzen A, Taler J. Benchmarking Electrolytes for the Solid Oxide Electrolyzer Using a Finite Element Model. Energies. 2023;16:6419.
  • [15] Song Y, Zhang X, Zhou Y, Lv H, Liu Q, Feng W, et al. Improving the performance of solid oxide electrolysis cell with gold nanoparticles-modified LSM-YSZ anode. Journal of Energy Chemistry. 2019; 35: 181–187.
  • [16] Yoon S-E, Ahn J-Y, Kim B-K, Park J-S. Improvements in co-electrolysis performance and long-term stability of solid oxide electrolysis cells based on ceramic composite cathodes. International Journal of Hydrogen Energy. 2015; 40(39): 13558-13565.
  • [17] Hjalmarsson P, Sun X, Liu Y-L, Chen M. Durability of high performance Ni-yttria stabilized zirconia supported solid oxide electrolysis cells at high current density. Journal of Power Sources. 2014; 262: 316-322.
  • [18] Dogdibegovic E, Ibanez S, Wallace A, Kopechek D, Arkenberg G, Swartz S, Funk JM, Reisert M, Rahman MA, Aphale A, Singh P, Ding H, Tang W, Glazoff MV, Ding D, Skafte TL, Tucker MC. Performance of stainless steel interconnects with (Mn,Co)3O4-Based coating for solid oxide electrolysis. International Journal of Hydrogen Energy. 2022; 47(58): 24279-24286.
  • [19] Yang C, Coffin A, Chen F. High temperature solid oxide electrolysis cell employing porous structured (La0.75Sr0.25)0.95MnO3 with enhanced oxygen electrode performance. International Journal of Hydrogen Energy. 2010;35:3221–3226.
  • [20] Biswas S, Kaur G, Giddey S. Steam electrolysis in solid oxide electrolytic cells using a cermet of copper and gadolinia doped ceria cathode. Electrochimica Acta. 2023; 468: 143150.
  • [21] Xing R, Wang Y, Liu S, Jin C. Preparation and characterization of La0.75Sr0.25Cr0.5Mn0.5O3−δ-yttria stabilized zirconia cathode supported solid oxide electrolysis cells for hydrogen generation. Journal of Power Sources. 2012;208:276–281.
  • [22] Laguna-Bercero MA, Skinner SJ, Kilner JA. Performance of solid oxide electrolysis cells based on scandia stabilised zirconia. Journal of Power Sources. 2009;192:126–131.
  • [23] Liang J, Han M. Different performance and mechanisms of CO2 electrolysis with CO and H2 as protective gases in solid oxide electrolysis cell. International Journal of Hydrogen Energy. 2022; 47(43): 18606-18618.
  • [24] Ni M. Modeling of a solid oxide electrolysis cell for carbon dioxide electrolysis. Chemical Engineering Journal. 2010;164:246–254.
  • [25] Jensen SH, Sun X, Ebbesen D, Knibbe R, Mogensen M. Hydrogen and synthetic fuel production using pressurized solid oxide electrolysis cells.International Journal of Hydrogen Energy. 2010; 35(18): 9544-9549.
  • [26] Xi C, Sang J, Wu A, Yang J, Qi X, Guan W, Wang J, Singhal SC. Electrochemical performance and durability of flat-tube solid oxide electrolysis cells for H2O/CO2 co-electrolysis. International Journal of Hydrogen Energy. 2022; 47(18): 10166-10174.
  • [27] Foit S, Dittrich L, Duyster T, Vinke I, Eichel RA, de Haart LGJ. Direct solid oxide electrolysis of carbon dioxide: Analysis of performance and processes. Processes. 2020;8:1390.
  • [28] Singh V, Muroyama H, Matsui T, Hashigami S, Inagaki T, Eguchi K. Feasibility of alternative electrode materials for high temperature CO2 reduction on solid oxide electrolysis cell. Journal of Power Sources. 2015;293:642–648.
  • [29] Liu Z, Han B, Lu Z, Guan W, Li Y, Song C, Chen L, Singhal SC. Efficiency and stability of hydrogen production from seawater using solid oxide electrolysis cells. Applied Energy. 2021; 300: 117439.
  • [30] Wang Y, Du Y, Ni M, Zhan R, Du Q, Jiao K. Three-dimensional modeling of flow field optimization for co-electrolysis solid oxide electrolysis cell. Applied Thermal Engineering. 2020; 172: 114959.
  • [31] Xu Y, Zhang J, Tu Z. Numerical simulation of flow channel geometries optimization for the planar solid oxide electrolysis cell. International Journal of Hydrogen Energy. 2024; 52: 288-301.
  • [32] Lay-Grindler E, Laurencin J, Delette G, Aicart J, Petitjean M, Dessemond L. Micro modelling of solid oxide electrolysis cell: From performance to durability. International Journal of Hydrogen Energy. 2013;38:6917–6929.
  • [33] Ilbas M, Kumuk B, Alemu MA, Arslan B. Numerical investigation of a direct ammonia tubular solid oxide fuel cell in comparison with hydrogen. International Journal of Hydrogen Energy. 2020;45:35108–35117.
  • [34] Cimen FM, Ilbas M, Yalcin S. Effects of physical properties and operating parameters on numerically developed flat-tube solid oxide fuel cell performance. International Journal of Hydrogen Energy. 2023;48:23136–23145.
  • [35] Kumuk B. Exploring the Impact of Channel Geometry and Temperature on Solid Oxide Electrolyzer Cell Performance, IHTEC2024, Diyarbakır, Türkiye.

Impact of Channel Geometry and Operating Temperature on the Performance of Solid Oxide Electrolyzer Cells: A Study of Uniform and Non-Uniform Temperature Effects

Yıl 2025, Cilt: 13 Sayı: 1, 200 - 218, 24.03.2025
https://doi.org/10.29109/gujsc.1635684

Öz

This study investigates the effects of channel geometry and operating temperature on the performance of Solid Oxide Electrolyzer Cells (SOECs), a promising technology for efficient hydrogen production. Through computational simulations and experimental analysis, we explore the impact of different channel designs—rectangular, triangular, and semicircular—on system efficiency. Among the geometries, rectangular channels deliver the highest performance, with a 10% efficiency improvement over the others. Additionally, increasing the operating temperature from 1073 K to 1273 K accelerates reaction kinetics, yielding a 15% efficiency gain. The study identifies the optimization of both channel design and temperature as crucial for maximizing hydrogen production. Furthermore, the research finds that non-uniform temperature distribution has minimal impact on performance for the small-scale fuel cell configuration used. These findings emphasize the importance of understanding the interplay between geometry and operating conditions in SOEC design and contribute to the advancement of sustainable hydrogen production technologies.

Kaynakça

  • [1] Hu K, Fang J, Ai X, Huang D, Zhong Z, Yang X, Wang L. Comparative study of alkaline water electrolysis, proton exchange membrane water electrolysis and solid oxide electrolysis through multiphysics modeling. Applied Energy. 2022; 312: 118788.
  • [2] Yelegen N, Kümük B, Kaplan RN, İlbaş M, Kaplan Y. Numerical and experimental studies on unitized regenerative proton exchange membrane fuel cell. International Journal of Hydrogen Energy. 2023; 48(35): 12969–12981.
  • [3] Ilbas M, Kumuk O, Karyeyen S. Modelling of the gas-turbine colorless distributed combustion: An application to hydrogen enriched – kerosene fuel. International Journal of Hydrogen Energy. 2022; 47(24): 12354–12364.
  • [4] Kumuk O, Ilbas M. Comparative analysis of ammonia/hydrogen fuel blends combustion in a high swirl gas turbine combustor with different cooling angles. International Journal of Hydrogen Energy. 2024; 52(B): 1404-1418.
  • [5] Henke M, Willich C, Kallo J, Friedrich KA. Theoretical study on pressurized operation of solid oxide electrolysis cells.International Journal of Hydrogen Energy. 2014; 39(24): 12434-12439.
  • [6] Alzahrani AA, Dincer I. Modeling and performance optimization of a solid oxide electrolysis system for hydrogen production. Applied Energy. 2018; 225: 471-485.
  • [7] Kim S-D, Seo D-W, Dorai AK, Woo S-K. The effect of gas compositions on the performance and durability of solid oxide electrolysis cells. International Journal of Hydrogen Energy. 2013; 38(16): 6569-6576.
  • [8] Chin W, Huang J, Liu Y, Wu Y, Lee Y. Correlation between the thickness of NiFe2O4 and hydrogen production performance for solid oxide electrolysis cells. International Journal of Hydrogen Energy. 2024; 52(B): 994-1001.
  • [9] Kim S-D, Yu J-H, Seo D-W, Han I-S, Woo S-K. Hydrogen production performance of 3-cell flat-tubular solid oxide electrolysis stack. International Journal of Hydrogen Energy. 2012; 37(1): 78-83.
  • [10] Wang Y, Wu C, Zu B, Han M, Du Q, Ni M, Jiao K. Ni migration of Ni-YSZ electrode in solid oxide electrolysis cell: An integrated model study. Journal of Power Sources. 2021; 516: 230660.
  • [11] Ni M, Leung MKH, Leung DYC. Parametric study of solid oxide steam electrolyzer for hydrogen production. International Journal of Hydrogen Energy. 2007; 32: 2305–2313.
  • [12] Chen H, Wang J, Xu X. Parametric Study of Operating Conditions on Performances of a Solid Oxide Electrolysis Cell. Journal of Thermal Science. 2023; 32: 1973-1988.
  • [13] Wang Z, Mori M, Araki T. Steam electrolysis performance of intermediate-temperature solid oxide electrolysis cell and efficiency of hydrogen production system at 300Nm3h-1. International Journal of Hydrogen Energy. 2010; 35(10): 4451–4458.
  • [14] Srinivas S, Dhanushkodi SR, Chidambaram RK, Skrzyniowska D, Korzen A, Taler J. Benchmarking Electrolytes for the Solid Oxide Electrolyzer Using a Finite Element Model. Energies. 2023;16:6419.
  • [15] Song Y, Zhang X, Zhou Y, Lv H, Liu Q, Feng W, et al. Improving the performance of solid oxide electrolysis cell with gold nanoparticles-modified LSM-YSZ anode. Journal of Energy Chemistry. 2019; 35: 181–187.
  • [16] Yoon S-E, Ahn J-Y, Kim B-K, Park J-S. Improvements in co-electrolysis performance and long-term stability of solid oxide electrolysis cells based on ceramic composite cathodes. International Journal of Hydrogen Energy. 2015; 40(39): 13558-13565.
  • [17] Hjalmarsson P, Sun X, Liu Y-L, Chen M. Durability of high performance Ni-yttria stabilized zirconia supported solid oxide electrolysis cells at high current density. Journal of Power Sources. 2014; 262: 316-322.
  • [18] Dogdibegovic E, Ibanez S, Wallace A, Kopechek D, Arkenberg G, Swartz S, Funk JM, Reisert M, Rahman MA, Aphale A, Singh P, Ding H, Tang W, Glazoff MV, Ding D, Skafte TL, Tucker MC. Performance of stainless steel interconnects with (Mn,Co)3O4-Based coating for solid oxide electrolysis. International Journal of Hydrogen Energy. 2022; 47(58): 24279-24286.
  • [19] Yang C, Coffin A, Chen F. High temperature solid oxide electrolysis cell employing porous structured (La0.75Sr0.25)0.95MnO3 with enhanced oxygen electrode performance. International Journal of Hydrogen Energy. 2010;35:3221–3226.
  • [20] Biswas S, Kaur G, Giddey S. Steam electrolysis in solid oxide electrolytic cells using a cermet of copper and gadolinia doped ceria cathode. Electrochimica Acta. 2023; 468: 143150.
  • [21] Xing R, Wang Y, Liu S, Jin C. Preparation and characterization of La0.75Sr0.25Cr0.5Mn0.5O3−δ-yttria stabilized zirconia cathode supported solid oxide electrolysis cells for hydrogen generation. Journal of Power Sources. 2012;208:276–281.
  • [22] Laguna-Bercero MA, Skinner SJ, Kilner JA. Performance of solid oxide electrolysis cells based on scandia stabilised zirconia. Journal of Power Sources. 2009;192:126–131.
  • [23] Liang J, Han M. Different performance and mechanisms of CO2 electrolysis with CO and H2 as protective gases in solid oxide electrolysis cell. International Journal of Hydrogen Energy. 2022; 47(43): 18606-18618.
  • [24] Ni M. Modeling of a solid oxide electrolysis cell for carbon dioxide electrolysis. Chemical Engineering Journal. 2010;164:246–254.
  • [25] Jensen SH, Sun X, Ebbesen D, Knibbe R, Mogensen M. Hydrogen and synthetic fuel production using pressurized solid oxide electrolysis cells.International Journal of Hydrogen Energy. 2010; 35(18): 9544-9549.
  • [26] Xi C, Sang J, Wu A, Yang J, Qi X, Guan W, Wang J, Singhal SC. Electrochemical performance and durability of flat-tube solid oxide electrolysis cells for H2O/CO2 co-electrolysis. International Journal of Hydrogen Energy. 2022; 47(18): 10166-10174.
  • [27] Foit S, Dittrich L, Duyster T, Vinke I, Eichel RA, de Haart LGJ. Direct solid oxide electrolysis of carbon dioxide: Analysis of performance and processes. Processes. 2020;8:1390.
  • [28] Singh V, Muroyama H, Matsui T, Hashigami S, Inagaki T, Eguchi K. Feasibility of alternative electrode materials for high temperature CO2 reduction on solid oxide electrolysis cell. Journal of Power Sources. 2015;293:642–648.
  • [29] Liu Z, Han B, Lu Z, Guan W, Li Y, Song C, Chen L, Singhal SC. Efficiency and stability of hydrogen production from seawater using solid oxide electrolysis cells. Applied Energy. 2021; 300: 117439.
  • [30] Wang Y, Du Y, Ni M, Zhan R, Du Q, Jiao K. Three-dimensional modeling of flow field optimization for co-electrolysis solid oxide electrolysis cell. Applied Thermal Engineering. 2020; 172: 114959.
  • [31] Xu Y, Zhang J, Tu Z. Numerical simulation of flow channel geometries optimization for the planar solid oxide electrolysis cell. International Journal of Hydrogen Energy. 2024; 52: 288-301.
  • [32] Lay-Grindler E, Laurencin J, Delette G, Aicart J, Petitjean M, Dessemond L. Micro modelling of solid oxide electrolysis cell: From performance to durability. International Journal of Hydrogen Energy. 2013;38:6917–6929.
  • [33] Ilbas M, Kumuk B, Alemu MA, Arslan B. Numerical investigation of a direct ammonia tubular solid oxide fuel cell in comparison with hydrogen. International Journal of Hydrogen Energy. 2020;45:35108–35117.
  • [34] Cimen FM, Ilbas M, Yalcin S. Effects of physical properties and operating parameters on numerically developed flat-tube solid oxide fuel cell performance. International Journal of Hydrogen Energy. 2023;48:23136–23145.
  • [35] Kumuk B. Exploring the Impact of Channel Geometry and Temperature on Solid Oxide Electrolyzer Cell Performance, IHTEC2024, Diyarbakır, Türkiye.
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Enerji
Bölüm Tasarım ve Teknoloji
Yazarlar

Berre Kümük 0000-0001-7953-0167

Erken Görünüm Tarihi 6 Mart 2025
Yayımlanma Tarihi 24 Mart 2025
Gönderilme Tarihi 7 Şubat 2025
Kabul Tarihi 25 Şubat 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 13 Sayı: 1

Kaynak Göster

APA Kümük, B. (2025). Impact of Channel Geometry and Operating Temperature on the Performance of Solid Oxide Electrolyzer Cells: A Study of Uniform and Non-Uniform Temperature Effects. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım Ve Teknoloji, 13(1), 200-218. https://doi.org/10.29109/gujsc.1635684

                                     16168      16167     16166     21432        logo.png   


    e-ISSN:2147-9526