Araştırma Makalesi
BibTex RIS Kaynak Göster

Genelleştirilmiş Kenmotsu Manifoldları Üzerinde Concircular Eğrilik Tensörü

Yıl 2018, CMES 2018 Ek Sayısı, 99 - 105, 30.11.2018
https://doi.org/10.17714/gumusfenbil.437302

Öz

Bu çalışmanın
amacı genelleştirilmiş Kenmotsu manifoldları üzerinde concircular eğrilik
tensörünün çalışılmasıdır. Concircular düz ve 
-concircular
düz
genelleştirilmiş Kenmotsu manifoldları
incelenmiştir. Ayrıca
-semi simetrik ve -concircular semi simetrik genelleştirilmiş
Kenmotsu manifoldları üzerine bazı sonuçlar verilmiştir. 


Kaynakça

  • Bhatt, L. and Dube, K. K., 2003. Semi-invarnant submanifolds of r-Kenmotsu manifolds. Acta Ciencia Indica Mathematics, 29 (1), 167-172.
  • Blair, D. E., Kim, J. S. and Tripathi, M., 2005. On the concircular curvature tensor of a contact metric manifold. Journal of the Korean Mathematical Society, 42 (5), 883-892.
  • Blair, D. E., 2010. Riemannian geometry of contact and Symplectic Manifolds. Boston, Birkhauser, 360p.
  • Falcitelli, M. and Pastore, A.M., 2006. f-structures of Kenmotsu Type. Mediterr J. Math., 3 (3-4), 549-564.
  • Goldberg, S.I. and Yano, K., 1971. Globally framed f-manifolds. III. J. Math., 15, 456-474.
  • Kenmotsu, K., 1972. A class of almost contact Riemannian manifolds. Tohoku Math. J. II Ser., 24, 93-103.
  • Kholodenko, A.L., 2013. Applications of Contact Geometry and Topology in Physics: Singapore, World Scientific Publishing Co., 492p.
  • Piti G., 2007. Geometry of Kenmotsu manifolds, Publishing House of Transilvania University of Braşov, Braşov.
  • Srikantha, N. and Venkatesha, 2017. On Invariant Submanifolds of a Generalized Kenmotsu Manifold Satisfying Certain Conditions. IJMMS, 13 (1), 17-25.
  • Tanno, S., 1969. The automorphism groups of almost contact Riemannian manifolds. Tohoku Math. J., 21, 21-38.
  • Turgut Vanli, A. and Sari, R., 2016. Generalized Kenmotsu Manifolds. Communications in Mathematics and Applications, 7 (4), 311-328.
  • Turgut Vanli, A. and Sari, R., 2015. On Semi-Invariant Submanifolds of a Generalized Kenmotsu Manifold Admitting a Semi-Symmetric Non-Metric Connection. Pure and Applied Mathematics Journal, 4 (1-2), 14-18.
  • Turgut Vanli, A. and Sari, R., 2015. On Semi-Invariant Submanifolds of a Generalized Kenmotsu Manifold Admitting a Semi-Symmetric Metric Connection, Acta Universitatis Apulensis, 43, 79-92.
  • Turgut Vanli, A. and Unal, I., 2017. Conformal, concircular, quasi-conformal and conharmonic flatness on normal complex contact metric manifolds. International Journal of Geometric Methods in Modern Physics, 14 (05), 1750067.
  • Vanli, A. T. and Unal, I., 2017. On Complex η-Einstein Normal Complex Contact Metric Manifolds. Communications in Mathematics and Applications, 8 (3), 301-313.
  • Yano, K., 1940. Concircular geometry I. Concircular transformations. Proceedings of the Imperial Academy, 16 (6), 195-200.
  • Yano, K. and Kon, M., 1984. Structure on manifolds. Series in Pure Math. 3, World Scientific, Singapore.

Concircular Curvature Tensor on Generalized Kenmotsu Manifolds

Yıl 2018, CMES 2018 Ek Sayısı, 99 - 105, 30.11.2018
https://doi.org/10.17714/gumusfenbil.437302

Öz

The aim of the present paper is to study on concircular curvature tensor
on generalized Kenmotsu manifolds. Concircular flat and 
-concircular flat
generalized Kenmotsu manifolds are examined. Also some results are given
about 
-semi symmetric
and
  -concircular semi symmetric generalized
Kenmotsu manifolds.

Kaynakça

  • Bhatt, L. and Dube, K. K., 2003. Semi-invarnant submanifolds of r-Kenmotsu manifolds. Acta Ciencia Indica Mathematics, 29 (1), 167-172.
  • Blair, D. E., Kim, J. S. and Tripathi, M., 2005. On the concircular curvature tensor of a contact metric manifold. Journal of the Korean Mathematical Society, 42 (5), 883-892.
  • Blair, D. E., 2010. Riemannian geometry of contact and Symplectic Manifolds. Boston, Birkhauser, 360p.
  • Falcitelli, M. and Pastore, A.M., 2006. f-structures of Kenmotsu Type. Mediterr J. Math., 3 (3-4), 549-564.
  • Goldberg, S.I. and Yano, K., 1971. Globally framed f-manifolds. III. J. Math., 15, 456-474.
  • Kenmotsu, K., 1972. A class of almost contact Riemannian manifolds. Tohoku Math. J. II Ser., 24, 93-103.
  • Kholodenko, A.L., 2013. Applications of Contact Geometry and Topology in Physics: Singapore, World Scientific Publishing Co., 492p.
  • Piti G., 2007. Geometry of Kenmotsu manifolds, Publishing House of Transilvania University of Braşov, Braşov.
  • Srikantha, N. and Venkatesha, 2017. On Invariant Submanifolds of a Generalized Kenmotsu Manifold Satisfying Certain Conditions. IJMMS, 13 (1), 17-25.
  • Tanno, S., 1969. The automorphism groups of almost contact Riemannian manifolds. Tohoku Math. J., 21, 21-38.
  • Turgut Vanli, A. and Sari, R., 2016. Generalized Kenmotsu Manifolds. Communications in Mathematics and Applications, 7 (4), 311-328.
  • Turgut Vanli, A. and Sari, R., 2015. On Semi-Invariant Submanifolds of a Generalized Kenmotsu Manifold Admitting a Semi-Symmetric Non-Metric Connection. Pure and Applied Mathematics Journal, 4 (1-2), 14-18.
  • Turgut Vanli, A. and Sari, R., 2015. On Semi-Invariant Submanifolds of a Generalized Kenmotsu Manifold Admitting a Semi-Symmetric Metric Connection, Acta Universitatis Apulensis, 43, 79-92.
  • Turgut Vanli, A. and Unal, I., 2017. Conformal, concircular, quasi-conformal and conharmonic flatness on normal complex contact metric manifolds. International Journal of Geometric Methods in Modern Physics, 14 (05), 1750067.
  • Vanli, A. T. and Unal, I., 2017. On Complex η-Einstein Normal Complex Contact Metric Manifolds. Communications in Mathematics and Applications, 8 (3), 301-313.
  • Yano, K., 1940. Concircular geometry I. Concircular transformations. Proceedings of the Imperial Academy, 16 (6), 195-200.
  • Yano, K. and Kon, M., 1984. Structure on manifolds. Series in Pure Math. 3, World Scientific, Singapore.
Toplam 17 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

İnan Ünal 0000-0003-1318-9685

Ramazan Sarı 0000-0002-6989-1492

Aysel Turgut Vanlı 0000-0001-9793-7366

Yayımlanma Tarihi 30 Kasım 2018
Gönderilme Tarihi 26 Haziran 2018
Kabul Tarihi 30 Kasım 2018
Yayımlandığı Sayı Yıl 2018 CMES 2018 Ek Sayısı

Kaynak Göster

APA Ünal, İ., Sarı, R., & Turgut Vanlı, A. (2018). Concircular Curvature Tensor on Generalized Kenmotsu Manifolds. Gümüşhane Üniversitesi Fen Bilimleri Dergisi99-105. https://doi.org/10.17714/gumusfenbil.437302

Cited By

SKEW SEMI-INVARIANT SUBMANIFOLDS OF GENERALIZED KENMOTSU MANIFOLDS
Journal of Engineering Technology and Applied Sciences
İ̇nan ÜNAL
https://doi.org/10.30931/jetas.836111