Araştırma Makalesi
BibTex RIS Kaynak Göster

Yüksek Plastisiteli Killerin Stabilizasyonu ve Dokusal Değişimler: Bir Taramalı Elektron Mikroskobu (SEM) Çalışması

Yıl 2019, Cilt: 9 Sayı: 3, 588 - 599, 15.07.2019
https://doi.org/10.17714/gumusfenbil.550905

Öz

Stabilizasyon, puzolanik katkı malzemeleri kullanılarak killerin kıvam,
dayanım ve sıkışma gibi geoteknik özelliklerinin iyileştirilmesidir. Kolay uygulanabilir
ve ekonomik olması nedeniyle günümüzde en fazla tercih edilen yöntemlerden
birisidir. Killi zeminlere belli oranlarda katkı malzemesi eklenerek uygulanan
bu yöntem ile zemin içerisinde meydana gelen puzolanik reaksiyon sonucunda
kilin geoteknik özellikleri iyileştirilebilmektedir. Bu yöntemde kullanılan
katkı malzemeleri kireç, uçucu kül, silis dumanı, çimento, reçine gibi doğal
olmayan puzolanlar ile birlikte tüf, volkanik kül, şeyl, diatomit gibi doğal
puzolanik malzemeler de kullanılmaktadır. Ancak, daha ekonomik olması nedeniyle
stabilizasyonun sadece doğal veya hem doğal hem de yapay puzolanlar
kullanılarak yapılması önemlidir. Bu çalışmada, yapay ve doğal puzolanların
kullanılması durumunda yüksek plastisiteli killerde meydana gelen dokusal
değişimler incelenmiştir. Bu amaçla yapılan laboratuvar çalışmalarında, katkı
malzemesi olarak sönmüş kireç, silis dumanı, uçucu kül ve tüf kullanılmıştır.
Farklı tür ve oranda kullanılan katkı malzemelerinin etkisiyle kilin kıvamında
ve dokusunda meydana gelen değişimler incelenmiştir. Yapılan çalışmalardan elde
edilen sonuçlara göre, özellikle yapay ve doğal katkı malzemelerinin birlikte
kullanıldığı örneklerde likit limit (LL) değerlerinin önemli ölçüde azaldığı
belirlenmiştir. Tüm örneklerde Taramalı Elektron Mikroskobu (SEM) çalışmaları
yapılmıştır. SEM çalışmaları ile elde edilen görüntüler, LL değerlerinde en
fazla azalmanın meydana geldiği örneklerde puzolanik reaksiyon sonucunda önemli
ölçüde topaklanmanın oluştuğunu göstermektedir. Bu örneklerde gelişen
topaklanma sonucunda tane boyutları ve taneler arası boşluklarda artışlar
belirlenmiştir. Ancak,  LL değerindeki
azalmanın sınırlı olduğu örneklerde topaklanma yeterince gelişmemiştir ve
taneler daha plakamsı şekillidir.

Kaynakça

  • Ajalloeian, R., Matinmanesh, H., Abtahi, S., Rowshanzamir, M., 2013. Effect of polyvinyl acetate grout injection on geotechnical properties of fine sand, Geomechanics and Geoengineering, 8(2), 86–96.
  • Aksoy, H.S., Yılmaz, M., Akarsu, E.E., 2008. Killi Bir Zeminin Tunçbilek Uçucu Külü Kullanılarak Stabilizasyonu, Doğu Anadolu Bölgeleri Araştırmaları.
  • Alhassan, M., 2008. Permeability of lateritic soil treated with lime and rice husk ash. Assumption Univ., J. Thailand, 12(2): 115-120.
  • Al-Khanbashi, A. and Abdalla, S., 2006. Evaluation of three waterborne polymers as stabilizers for sandy soil, Geotechnical and Geological Engineering, 24(6), 1603–1625.
  • Al-Rawas, A.A., Hugo, A.W. and Al-Sami, H., 2005. Effect of lime, cement and artificial pozzolan on the swelling potential of an expansive soil from Oman”, Building & Environment, 40, Elsevier, 267-281.
  • Anagnostopoulos, C. and Papaliangas, T., 2012. Experimental investigation of epoxy resin and sand mixes, Journal of Geotechnical and Geoenvironmental Engineering, 138(7), 841–849.
  • Anagnostopoulos, C., Kandiliotis, P., Lola M., Karavatos S., 2013. Effect of epoxy resin mixtures on the physical and mechanical properties of sand, Research Journal of Applied Sciences, Engineering and Technology, 7(17), 3478–3490.
  • Asgari, M. R., Dezfuli, A. Baghebanzadeh, Bayat, M., 2015. Experimental Study on Stabilization of a Low Plasticity Clayey Coil With Cement/Lime, Arabian Journal of Geosciences 8(3), 1439-1452. ASTM, 2012. Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort, (ASTM D698- 12e2). ASTM International, West Conshohocken, PA.
  • ASTM, 2017. Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils, (ASTM D4318-17e1). ASTM International, West Conshohocken, PA.
  • Attoh-Okine, N.O., 1995. Lime treatment of laterite soils and gravels-revisited. Constr. Build. Mater., 9(5): 283-287.
  • Azadegan, O., Jafari, S.H. and Li, J., 2012. Compaction characteristics and mechanical properties of lime/cement treated granular soils. Electron. J. Geotech. Eng., 17: 2275-2284.
  • Bell, F., 1996. Lime stabilization of clay minerals and soils. Eng. Geol., 42(4): 223-237.
  • Boardman, D.I., Glendinning, S. and Rogers, C.D.F. 2001. “Development of stabilization and solidification in lime-clay mixes”, Geotechnique, 51(6), 533-543.
  • Braga Reis, M.O., 1981. Formation of expansive calcium sulphoaluminate by the action of the sulphate ion on weathered granites in a calcium hydroxide-saturated medium. Cement Concrete Res., 11(4): 541-547.
  • Bulut, Ü., 2007. Perlitin Puzolanik Aktivitesi, İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi, 162s.
  • Broms, B. and Boman P., 1977. Stabilization of Soil with Lime-soil Columns. Design Handbook, 2nd Edn., Royal Institute of Technology, Stockholm, Sweden.
  • Chu, S.C. and Kao, H.S., 1993. A Study of Engineering Propeıties of A Clay Modified By Fly Ash and Slag, Fly Ash for Soil İmprovement, Geotechnical Special Publication, No:36, s. 89-100, Ed.:Sharp K.D., ASCE, Newyork.
  • Chong, S.Y. and Kassim, K.A., 2014. Consolidation characteristics of lime column and Geotextile Encapsulated Lime Column (GELC) stabilized pontian marine clay. Electron. J. Geotech. Eng., 19A: 129-141.
  • Collins, K., 1984. “Characterization of expansive soil microfabric.” In Proceedings of the 5th International Conference on Expansive Soils, Adelaide, South Australia, pp. 37- 41.
  • Cuisinier, O., Auriol, J-C., Le Borgne, T. and Deneele, D., 2011. “Microstructure and hydraulic conductivity of a compacted lime-treated soil”, Eng. Geol., 123(3), 187-193.
  • Dempsey, B.J. and Thompson, M.R., 1968. Durability Properties of Lime-soil Mixtures. Highway Research Record No. 235, National Research Council, Washington D.C.
  • El-Rawi, N.M. and Awad A.A.A., 1981. Permeability of lime stabilized soils. T. Eng. J., 107(1): 25-35.
  • Fındık, S., 2005. Karayolu esnek üstyapıları alttemel tabakasının stabilizasyonunda hafif agregaların kullanılabilirliği, Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Yüksek Lisans tezi, Isparta.
  • Gilazghi, S., Huang, J., Rezaeimalek, S., Bin-Shafique, S., 2016. Stabilizing sulfate-rich high plasticity clay with moisture activated polymerization, Engineering Geology, 211, 171–178.
  • Geiman, C.M., 2005. Stabilization of soft clay subgrades in Virginia phase I laboratory study. M.A. Thesis, Virginia Polytechnic Institute and State University.
  • Goodarzi, A. R., Goodarzi, Sh., Akbari, H. R., 2015. Assessing Geo-Mechanical and Micro-Structural Performance of Modified Expansive Clayey Soil by Silica Fume as Industrial Waste, Iranian Journal of Science And Technology-Transactions of Civil Engineering, 39 (C2), 333-350.
  • Harichane, K., Ghrici, M., Khebizi, W. and Missoum, H., 2011. “Effet de la combinaison de la chaux et de la pouzzolane naturelle sur la durabilité des sols argileux“, Proceedings of 29th meeting of AUGC-Tlemcen, Algeria, 29-31 mai, 2, 65-75.
  • Hilf, J., 1991. Compacted fill, in: H. Fang (Ed.), Foundation Engineering Handbook, Van Nostrand Reinhold, NewYork, ABD.
  • Harris, P., Holdt, P., Sebesta, S., 2006. Recommendations for Stabilization of High-Sulfate Soils in Texas, Federal Highway Administration, Texas Transportation Institute, Texas A&M University, FHWA/TX-06/0-4240-3.
  • Hossain, K. M. A., Mol, L., 2011. Some Engineering Properties of Stabilized Clayey Soils Incorporating Natural Pozzolans and Industrial Wastes, Construction and Building Materials, 25(8), 3495-3501.
  • Hunter, D., 1988. Lime-induced heave in sulfate-bearing clay soils. J. Geotech. Eng., 114(2): 150-167.
  • Imbabi, M., Carrigan, C., McKenna, S., 2012. Trends and developments in green cement and concrete technology”, International Journal of Sustainable Built Environment, 1(2), 194–216.
  • Jawad, I.T., Taha, M.R., Majeed, Z.H., and Khan, T.A., 2014. Soil Stabilization Using Lime: Advantages, Disadvantages and Proposing a Potential Alternative, Research Journal of Applied Sciences, Engineering and Technology 8(4): 510-520.
  • Kalkan, E. and Akbulut, S., 2004. “The positive effects of silica fume on the permeability, swelling pressure and compressive strength of natural clay liners”, Eng. Geol., 73(1-2), 145-156.
  • Katz, L., Rauch, A., Liljestrand, H., Harmon, J., Shaw, K., Albers, H., 2001. Mechanisms of soil stabilization with liquid ionic stabilizer, Transportation Research Records: Journal of Transportation Research Board, 1757, 50–57.
  • Kavlak, Y., 2008. Isparta Gelincik pomzasının karayolu esnek üstyapıları taban zemini stabilizasyonunda kullanımı, Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Yüksek Lisans tezi, Isparta.
  • Keskin, S.N., Çimen, Ö., 1997. Killi zeminlerin mühendislik özelliklerinin iyileştirilmesinde pomza kullanımının araştırılması, I. Isparta Pomza Sempozyumu, 97-101.
  • Khattab, S.A.A., Al-Juari, K.A.K. and Al-Kiki, I., 2008. Strength, durability and hydraulic properties of clayey soil stabilized with lime and industrial waste lime. Al-Rafidain Eng., 16(1): 102-116.
  • Kinuthia, J.M., Wild, S. and Jones G.I., 1999. Effects of monovalent and divalent metal sulphates on consistency and compaction of lime-stabilised kaolinite. Appl. Clay Sci., 14(1-3): 27-45.
  • Li, X.J., 2014. Shrinkage Cracking of Soils and Cementitiously-Stabilized Soils: Mechanisms and Modeling, Ph.D. thesis, Washington State University, ABD.
  • Lin, B., Cerato, Amy B., Madden, Andrew S., Madden, Megan E Elwood., 2013. Effect of Fly Ash on the Behavior of Expansive Soils: Microscopic Analysis, Environmental Engineering Geoscience, 19(1), 85-94.
  • Little, D.N., 1992. Comparison of in-situ resilient moduli of aggregate base courses with and without low percentages of lime stabilization, ASTM Special Technical Publication, 1135, 8–22.
  • Little, D., 1995. Stabilization of Pavement Subgrades Base Courses with Lime, Lime Association of Texas, ABD.
  • Little, D.N., Scullion, T., Kota, P.B.V.S. and Bhuiyan, J., 1995. Guidelines for mixture design and thickness design for stabilized bases and subgrades. Texas A and M University, Austin, Texas.
  • Locat, J., Berube, M.A. and Choquette, M., 1990. Laboratory investigations on the lime stabilization of sensitive clays: Shear strength development. Can. Geotech. J., 27(3): 294-304.
  • Locat, J., Trembaly, H. and Leroueil S., 1996. Mechanical and hydraulic behaviour of a soft inorganic clay treated with lime. Can. Geotech. J., 33(4): 654-669.
  • Mahamedi, A. and Khemissa, M., 2013. “Cement stabilization of compacted expansive clay”, Online j. Sci. Technol., 3(1), 33-38.
  • Mallela, J., Harold Von Quintus, P., Smith, K.L. and Consultants, E., 2004. Consideration of Limestabilized Layers in Mechanistic-empirical Pavement Design. The National Lime Association, Arlington, Virginia, USA.
  • McCallister, L.D. and Petry, T.M., 1992. Leach tests on lime-treated clays. Geotech. Test. J., 15(2).
  • Mitchell, J.K., 1986. Practical problems from surprising soil behavior. J. Geotech. Eng-ASCE, 112(3): 255-289.
  • Mitchell, J.K., 1993. Fundamentals of Soil Behavior, 2nd edn. Wiley, New York.
  • Milburn, J.P. and Parsons, R., 2004. Performance of soil stabilization agents. Report KU-01-8, Kansas Department of Transportation, Topeka, KS.
  • Mohammed, A. and Vipulanandan, C., 2013. Compressive and tensile behavior of polymer treated sulfate contaminated CL Soil, Geotechnical and Geological Engineering, 32(1), 71-83.
  • Nalbantoglu, Z. and Tuncer, E.R., 2001. Compressibility and hydraulic conductivity of a chemically treated expansive clay. Can. Geotech. J., 38(1): 154-160.
  • Naeini, S., Ghorbanalizadeh, M., 2010. Effect of wet and dry conditions on strength of silty sand soils stabilized with epoxy resin polymer, Journal of Applied Sciences, 10(22), 2839–2846.
  • Naeini, S., Naderinia, B., Izadi, E., 2012. Unconfined compressive strength of clayey soils stabilized with waterborne polymer, KSCE Journal of Civil Engineering, 16(6), 943–949.
  • Nair, S. and Little, D., 2011. Mechanisms of distress associated with sulfate-induced heaving in limetreated soils. Transp. Res. Record: J. Trans. Res. Board, 2212(1): 82-90.
  • Newman, K., Tingle, J., 2004. Emulsion polymers for soil stabilization, Airport Technology Transfer Conference, Atlantic City, New Jersey, ABD.
  • Okucu, A., 1998. Bigadiç ve Turnatepe (Balıkesir) Yörelerindeki Zeolitik ve Perlitik Tüflerin Puzolanik Özellikleri, Balıkesir Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi, Balıkesir, 1-54s.
  • Onitsuka, K., Modmoltin, C. and Kouno, M., 2001. Investigation on microstructure and strength of lime and cement stabilized ariake clay. Rep. Fac. Sci. Eng. Saga Univ., 30(1): 49-63.
  • Puppala, A.J., Ramakrishna, A.M., Hoyos, L.R., 2003. Resilient moduli of treated clays from repeated load triaxial test, Transportation Research Records: Journal of Transportation Research Board, 1821, 68-74.
  • Push, R., 1979. “Unfrozen water as a function of clay microstructure”, Engineering Geology, Vol. 13, pp. 157-162.
  • Rajasekaran, G. and Rao, S.N., 1997. The microstructure of lime-stabilized marine clay. Ocean Eng., 24(9): 867-878.
  • Rajasekaran, G. and Rao, S.N., 2002. Compressibility behaviour of lime-treated marine clay. Ocean Eng., 29(5): 545-559.
  • Ramadas, T., Kumar, N.D. and Yesuratnam, G., 2011. Geotechnical characteristics of three expansive soils treated with lime and flyash. Int. J. Earth Sci. Eng., 4: 46-49.
  • Rao, S.M. and Shivananda, P., 2005. Compressibility behaviour of lime-stabilized clay. Geotech. Geolog. Eng., 23(3): 309-319.
  • Rauch, A., Harmon, J., Katz, L., Liljestrand, H., 2002. Measured effects of liquid soil stabilizers on engineering properties of clay, Transportation Research Records: Journal of Transportation Research Board, 1787, 33–41.
  • Santoni, R., Tingle, J., Webster, S., 2002. Stabilization of silty sand with Nontraditional additives, Transportation Research Records: Journal of Transportation Research Board, 1787, 61-70.
  • Sebesta, S., 2005. Use of microcracking to reduce shrinkage cracking in cementtreated bases, Transportation Research Records: Journal of Transportation Research Board, 1936, 3–11.
  • Sherwood, P., 1994. Soil Stabilization with Cement and Lime, Stationary office, London, UK.
  • Sridharan, A., Sivapullaiah, P. and Ramesh, H., 1995. Consolidation behaviour of lime treated sulphate soils. Proceeding of the International Symposium on Comprssion and Consolidation of Clayey Soils, pp: 183-188.
  • Tedesco, D.V., 2006. Hydro-mechanical behaviour of lime-stabilised soils. Ph.D. Thesis, University of Cassino. Cassino, Italy.
  • Terrei, R., Epps J., Barenberg, E., Mitchell, J. and Thompson M., 1984. Soil stabilization in pavement structures-a user's manual. Vol. 2, Moisture design consideration. Federal Highway Administration, Washington, DC.
  • Thompson, M.R., 1969. Engineering properties of limesoil mixtures. J. Mater., JMLSA, 4(4): 968-969.
  • Thompson, M. and Dempsey, B., 1969. Autogenous healing of lime-soil mixtures. Highway Res. Record, 263: 1-7.
  • Türköz, M., 2009. Sıkıştırılmış Şişen Killerin Mikroyapısal Değişiminde Şişme-Büzülme Çevrimin Etkisi, Journal of Engineering and Architecture Faculty of Eskişehir Osmangazi University, Vol: XXII, No:1.
  • Tremblay, H., Leroueil, S. and Locat, J., 2001. Mechanical improvement and vertical yield stress prediction of clayey soils from eastern Canada treated with lime or cement. Can. Geotech. J., 38(3): 567-579.
  • Voottipruex, P. and Jamsawang, P., 2014. "Characteristics of expansive soils improved with cement and fly ash in Northern Thailand", Geomechanics and Engineering An Int'l Journal, 6 (5), 437-453.
  • Yang, G., Liu, H., Lv, P. and Zhang B., 2012. Geogrid-reinforced lime-treated cohesive soil retaining wall: Case study and implications. Geotext. Geomembranes, 35(0): 112-118.
  • Zandieh, A., Yasrobi, S., 2010. Study of factors affecting the compressive strength of sandy soil stabilized with polymer, Geotechnical and Geological Engineering, 28(2), 139–145.
  • Wang, D., Abriak, N.E., Zentar, R., Chen, W., 2013. Effect of Lime Treatment on Geotechnical Properties of Dunkirk Sediments in France, Road Materials and Pavement Design, 14(3), 485-503.
  • Wild, S., Kinuthia, J., Robinson, R. and Humphreys, I., 1996. Effects of ground granulated blast furnace slag (GGBS) on the strength and swelling properties of lime-stabilized kaolinite in the presence of sulphates. Clay Miner., 31(3): 423-433.

The Stabilization of High Plasticity Clays and Textural Changes: A Scanning Electron Microscope (SEM) Study

Yıl 2019, Cilt: 9 Sayı: 3, 588 - 599, 15.07.2019
https://doi.org/10.17714/gumusfenbil.550905

Öz

Stabilization is the
improvement of geotechnical properties of clays such as consistency, strength
and compression by using pozzolanic additives.
Today, it is one of
the most preferred methods because it is easily applicable and economical.
With this method,
which is applied by adding certain amounts of additive to clayey soils, the
geotechnical properties of clay can be improved by the pozzolanic reaction
occurring in the soil.
In this method, natural pozzolanic materials
such as tuff, volcanic ash, shale, and diatomite have been used with the
unnatural pozzolans such as lime, fly ash, silica fume, cement and resin as
additives. However, it is important to make stabilization using only natural or
both natural and unnatural pozzolans since it is more economical. In this
study, the textural changes in high plasticity clay were
investigated when using of natural and unnatural pozzolans
. For this
purpose, in the laboratory studies, slaked lime, silica fume, fly ash and tuff
were used as additives. Variations in the
consistency and texture of the clay due to the effects of different kinds and
proportions of additives were investigated.
According to the results
obtained from the study, it was determined that the liquid limit (LL) values
​​decreased significantly in the samples where the unnatural and natural
additives were used together. Scanning Electron Microscopy (SEM) studies were
performed in all samples. The images obtained by SEM studies showed that in the
cases where the maximum 
decrease in LL values
​​occurred, significant agglomeration occurred as a result of pozzolanic
reaction.
As a result of the agglomeration in these
samples, increase in grain sizes and intergranular spaces were observed. However,
in the samples where the reduction in LL is limited, agglomeration was not
sufficiently developed and the grains are more plaque-shaped.
  

Kaynakça

  • Ajalloeian, R., Matinmanesh, H., Abtahi, S., Rowshanzamir, M., 2013. Effect of polyvinyl acetate grout injection on geotechnical properties of fine sand, Geomechanics and Geoengineering, 8(2), 86–96.
  • Aksoy, H.S., Yılmaz, M., Akarsu, E.E., 2008. Killi Bir Zeminin Tunçbilek Uçucu Külü Kullanılarak Stabilizasyonu, Doğu Anadolu Bölgeleri Araştırmaları.
  • Alhassan, M., 2008. Permeability of lateritic soil treated with lime and rice husk ash. Assumption Univ., J. Thailand, 12(2): 115-120.
  • Al-Khanbashi, A. and Abdalla, S., 2006. Evaluation of three waterborne polymers as stabilizers for sandy soil, Geotechnical and Geological Engineering, 24(6), 1603–1625.
  • Al-Rawas, A.A., Hugo, A.W. and Al-Sami, H., 2005. Effect of lime, cement and artificial pozzolan on the swelling potential of an expansive soil from Oman”, Building & Environment, 40, Elsevier, 267-281.
  • Anagnostopoulos, C. and Papaliangas, T., 2012. Experimental investigation of epoxy resin and sand mixes, Journal of Geotechnical and Geoenvironmental Engineering, 138(7), 841–849.
  • Anagnostopoulos, C., Kandiliotis, P., Lola M., Karavatos S., 2013. Effect of epoxy resin mixtures on the physical and mechanical properties of sand, Research Journal of Applied Sciences, Engineering and Technology, 7(17), 3478–3490.
  • Asgari, M. R., Dezfuli, A. Baghebanzadeh, Bayat, M., 2015. Experimental Study on Stabilization of a Low Plasticity Clayey Coil With Cement/Lime, Arabian Journal of Geosciences 8(3), 1439-1452. ASTM, 2012. Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort, (ASTM D698- 12e2). ASTM International, West Conshohocken, PA.
  • ASTM, 2017. Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils, (ASTM D4318-17e1). ASTM International, West Conshohocken, PA.
  • Attoh-Okine, N.O., 1995. Lime treatment of laterite soils and gravels-revisited. Constr. Build. Mater., 9(5): 283-287.
  • Azadegan, O., Jafari, S.H. and Li, J., 2012. Compaction characteristics and mechanical properties of lime/cement treated granular soils. Electron. J. Geotech. Eng., 17: 2275-2284.
  • Bell, F., 1996. Lime stabilization of clay minerals and soils. Eng. Geol., 42(4): 223-237.
  • Boardman, D.I., Glendinning, S. and Rogers, C.D.F. 2001. “Development of stabilization and solidification in lime-clay mixes”, Geotechnique, 51(6), 533-543.
  • Braga Reis, M.O., 1981. Formation of expansive calcium sulphoaluminate by the action of the sulphate ion on weathered granites in a calcium hydroxide-saturated medium. Cement Concrete Res., 11(4): 541-547.
  • Bulut, Ü., 2007. Perlitin Puzolanik Aktivitesi, İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi, 162s.
  • Broms, B. and Boman P., 1977. Stabilization of Soil with Lime-soil Columns. Design Handbook, 2nd Edn., Royal Institute of Technology, Stockholm, Sweden.
  • Chu, S.C. and Kao, H.S., 1993. A Study of Engineering Propeıties of A Clay Modified By Fly Ash and Slag, Fly Ash for Soil İmprovement, Geotechnical Special Publication, No:36, s. 89-100, Ed.:Sharp K.D., ASCE, Newyork.
  • Chong, S.Y. and Kassim, K.A., 2014. Consolidation characteristics of lime column and Geotextile Encapsulated Lime Column (GELC) stabilized pontian marine clay. Electron. J. Geotech. Eng., 19A: 129-141.
  • Collins, K., 1984. “Characterization of expansive soil microfabric.” In Proceedings of the 5th International Conference on Expansive Soils, Adelaide, South Australia, pp. 37- 41.
  • Cuisinier, O., Auriol, J-C., Le Borgne, T. and Deneele, D., 2011. “Microstructure and hydraulic conductivity of a compacted lime-treated soil”, Eng. Geol., 123(3), 187-193.
  • Dempsey, B.J. and Thompson, M.R., 1968. Durability Properties of Lime-soil Mixtures. Highway Research Record No. 235, National Research Council, Washington D.C.
  • El-Rawi, N.M. and Awad A.A.A., 1981. Permeability of lime stabilized soils. T. Eng. J., 107(1): 25-35.
  • Fındık, S., 2005. Karayolu esnek üstyapıları alttemel tabakasının stabilizasyonunda hafif agregaların kullanılabilirliği, Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Yüksek Lisans tezi, Isparta.
  • Gilazghi, S., Huang, J., Rezaeimalek, S., Bin-Shafique, S., 2016. Stabilizing sulfate-rich high plasticity clay with moisture activated polymerization, Engineering Geology, 211, 171–178.
  • Geiman, C.M., 2005. Stabilization of soft clay subgrades in Virginia phase I laboratory study. M.A. Thesis, Virginia Polytechnic Institute and State University.
  • Goodarzi, A. R., Goodarzi, Sh., Akbari, H. R., 2015. Assessing Geo-Mechanical and Micro-Structural Performance of Modified Expansive Clayey Soil by Silica Fume as Industrial Waste, Iranian Journal of Science And Technology-Transactions of Civil Engineering, 39 (C2), 333-350.
  • Harichane, K., Ghrici, M., Khebizi, W. and Missoum, H., 2011. “Effet de la combinaison de la chaux et de la pouzzolane naturelle sur la durabilité des sols argileux“, Proceedings of 29th meeting of AUGC-Tlemcen, Algeria, 29-31 mai, 2, 65-75.
  • Hilf, J., 1991. Compacted fill, in: H. Fang (Ed.), Foundation Engineering Handbook, Van Nostrand Reinhold, NewYork, ABD.
  • Harris, P., Holdt, P., Sebesta, S., 2006. Recommendations for Stabilization of High-Sulfate Soils in Texas, Federal Highway Administration, Texas Transportation Institute, Texas A&M University, FHWA/TX-06/0-4240-3.
  • Hossain, K. M. A., Mol, L., 2011. Some Engineering Properties of Stabilized Clayey Soils Incorporating Natural Pozzolans and Industrial Wastes, Construction and Building Materials, 25(8), 3495-3501.
  • Hunter, D., 1988. Lime-induced heave in sulfate-bearing clay soils. J. Geotech. Eng., 114(2): 150-167.
  • Imbabi, M., Carrigan, C., McKenna, S., 2012. Trends and developments in green cement and concrete technology”, International Journal of Sustainable Built Environment, 1(2), 194–216.
  • Jawad, I.T., Taha, M.R., Majeed, Z.H., and Khan, T.A., 2014. Soil Stabilization Using Lime: Advantages, Disadvantages and Proposing a Potential Alternative, Research Journal of Applied Sciences, Engineering and Technology 8(4): 510-520.
  • Kalkan, E. and Akbulut, S., 2004. “The positive effects of silica fume on the permeability, swelling pressure and compressive strength of natural clay liners”, Eng. Geol., 73(1-2), 145-156.
  • Katz, L., Rauch, A., Liljestrand, H., Harmon, J., Shaw, K., Albers, H., 2001. Mechanisms of soil stabilization with liquid ionic stabilizer, Transportation Research Records: Journal of Transportation Research Board, 1757, 50–57.
  • Kavlak, Y., 2008. Isparta Gelincik pomzasının karayolu esnek üstyapıları taban zemini stabilizasyonunda kullanımı, Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Yüksek Lisans tezi, Isparta.
  • Keskin, S.N., Çimen, Ö., 1997. Killi zeminlerin mühendislik özelliklerinin iyileştirilmesinde pomza kullanımının araştırılması, I. Isparta Pomza Sempozyumu, 97-101.
  • Khattab, S.A.A., Al-Juari, K.A.K. and Al-Kiki, I., 2008. Strength, durability and hydraulic properties of clayey soil stabilized with lime and industrial waste lime. Al-Rafidain Eng., 16(1): 102-116.
  • Kinuthia, J.M., Wild, S. and Jones G.I., 1999. Effects of monovalent and divalent metal sulphates on consistency and compaction of lime-stabilised kaolinite. Appl. Clay Sci., 14(1-3): 27-45.
  • Li, X.J., 2014. Shrinkage Cracking of Soils and Cementitiously-Stabilized Soils: Mechanisms and Modeling, Ph.D. thesis, Washington State University, ABD.
  • Lin, B., Cerato, Amy B., Madden, Andrew S., Madden, Megan E Elwood., 2013. Effect of Fly Ash on the Behavior of Expansive Soils: Microscopic Analysis, Environmental Engineering Geoscience, 19(1), 85-94.
  • Little, D.N., 1992. Comparison of in-situ resilient moduli of aggregate base courses with and without low percentages of lime stabilization, ASTM Special Technical Publication, 1135, 8–22.
  • Little, D., 1995. Stabilization of Pavement Subgrades Base Courses with Lime, Lime Association of Texas, ABD.
  • Little, D.N., Scullion, T., Kota, P.B.V.S. and Bhuiyan, J., 1995. Guidelines for mixture design and thickness design for stabilized bases and subgrades. Texas A and M University, Austin, Texas.
  • Locat, J., Berube, M.A. and Choquette, M., 1990. Laboratory investigations on the lime stabilization of sensitive clays: Shear strength development. Can. Geotech. J., 27(3): 294-304.
  • Locat, J., Trembaly, H. and Leroueil S., 1996. Mechanical and hydraulic behaviour of a soft inorganic clay treated with lime. Can. Geotech. J., 33(4): 654-669.
  • Mahamedi, A. and Khemissa, M., 2013. “Cement stabilization of compacted expansive clay”, Online j. Sci. Technol., 3(1), 33-38.
  • Mallela, J., Harold Von Quintus, P., Smith, K.L. and Consultants, E., 2004. Consideration of Limestabilized Layers in Mechanistic-empirical Pavement Design. The National Lime Association, Arlington, Virginia, USA.
  • McCallister, L.D. and Petry, T.M., 1992. Leach tests on lime-treated clays. Geotech. Test. J., 15(2).
  • Mitchell, J.K., 1986. Practical problems from surprising soil behavior. J. Geotech. Eng-ASCE, 112(3): 255-289.
  • Mitchell, J.K., 1993. Fundamentals of Soil Behavior, 2nd edn. Wiley, New York.
  • Milburn, J.P. and Parsons, R., 2004. Performance of soil stabilization agents. Report KU-01-8, Kansas Department of Transportation, Topeka, KS.
  • Mohammed, A. and Vipulanandan, C., 2013. Compressive and tensile behavior of polymer treated sulfate contaminated CL Soil, Geotechnical and Geological Engineering, 32(1), 71-83.
  • Nalbantoglu, Z. and Tuncer, E.R., 2001. Compressibility and hydraulic conductivity of a chemically treated expansive clay. Can. Geotech. J., 38(1): 154-160.
  • Naeini, S., Ghorbanalizadeh, M., 2010. Effect of wet and dry conditions on strength of silty sand soils stabilized with epoxy resin polymer, Journal of Applied Sciences, 10(22), 2839–2846.
  • Naeini, S., Naderinia, B., Izadi, E., 2012. Unconfined compressive strength of clayey soils stabilized with waterborne polymer, KSCE Journal of Civil Engineering, 16(6), 943–949.
  • Nair, S. and Little, D., 2011. Mechanisms of distress associated with sulfate-induced heaving in limetreated soils. Transp. Res. Record: J. Trans. Res. Board, 2212(1): 82-90.
  • Newman, K., Tingle, J., 2004. Emulsion polymers for soil stabilization, Airport Technology Transfer Conference, Atlantic City, New Jersey, ABD.
  • Okucu, A., 1998. Bigadiç ve Turnatepe (Balıkesir) Yörelerindeki Zeolitik ve Perlitik Tüflerin Puzolanik Özellikleri, Balıkesir Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi, Balıkesir, 1-54s.
  • Onitsuka, K., Modmoltin, C. and Kouno, M., 2001. Investigation on microstructure and strength of lime and cement stabilized ariake clay. Rep. Fac. Sci. Eng. Saga Univ., 30(1): 49-63.
  • Puppala, A.J., Ramakrishna, A.M., Hoyos, L.R., 2003. Resilient moduli of treated clays from repeated load triaxial test, Transportation Research Records: Journal of Transportation Research Board, 1821, 68-74.
  • Push, R., 1979. “Unfrozen water as a function of clay microstructure”, Engineering Geology, Vol. 13, pp. 157-162.
  • Rajasekaran, G. and Rao, S.N., 1997. The microstructure of lime-stabilized marine clay. Ocean Eng., 24(9): 867-878.
  • Rajasekaran, G. and Rao, S.N., 2002. Compressibility behaviour of lime-treated marine clay. Ocean Eng., 29(5): 545-559.
  • Ramadas, T., Kumar, N.D. and Yesuratnam, G., 2011. Geotechnical characteristics of three expansive soils treated with lime and flyash. Int. J. Earth Sci. Eng., 4: 46-49.
  • Rao, S.M. and Shivananda, P., 2005. Compressibility behaviour of lime-stabilized clay. Geotech. Geolog. Eng., 23(3): 309-319.
  • Rauch, A., Harmon, J., Katz, L., Liljestrand, H., 2002. Measured effects of liquid soil stabilizers on engineering properties of clay, Transportation Research Records: Journal of Transportation Research Board, 1787, 33–41.
  • Santoni, R., Tingle, J., Webster, S., 2002. Stabilization of silty sand with Nontraditional additives, Transportation Research Records: Journal of Transportation Research Board, 1787, 61-70.
  • Sebesta, S., 2005. Use of microcracking to reduce shrinkage cracking in cementtreated bases, Transportation Research Records: Journal of Transportation Research Board, 1936, 3–11.
  • Sherwood, P., 1994. Soil Stabilization with Cement and Lime, Stationary office, London, UK.
  • Sridharan, A., Sivapullaiah, P. and Ramesh, H., 1995. Consolidation behaviour of lime treated sulphate soils. Proceeding of the International Symposium on Comprssion and Consolidation of Clayey Soils, pp: 183-188.
  • Tedesco, D.V., 2006. Hydro-mechanical behaviour of lime-stabilised soils. Ph.D. Thesis, University of Cassino. Cassino, Italy.
  • Terrei, R., Epps J., Barenberg, E., Mitchell, J. and Thompson M., 1984. Soil stabilization in pavement structures-a user's manual. Vol. 2, Moisture design consideration. Federal Highway Administration, Washington, DC.
  • Thompson, M.R., 1969. Engineering properties of limesoil mixtures. J. Mater., JMLSA, 4(4): 968-969.
  • Thompson, M. and Dempsey, B., 1969. Autogenous healing of lime-soil mixtures. Highway Res. Record, 263: 1-7.
  • Türköz, M., 2009. Sıkıştırılmış Şişen Killerin Mikroyapısal Değişiminde Şişme-Büzülme Çevrimin Etkisi, Journal of Engineering and Architecture Faculty of Eskişehir Osmangazi University, Vol: XXII, No:1.
  • Tremblay, H., Leroueil, S. and Locat, J., 2001. Mechanical improvement and vertical yield stress prediction of clayey soils from eastern Canada treated with lime or cement. Can. Geotech. J., 38(3): 567-579.
  • Voottipruex, P. and Jamsawang, P., 2014. "Characteristics of expansive soils improved with cement and fly ash in Northern Thailand", Geomechanics and Engineering An Int'l Journal, 6 (5), 437-453.
  • Yang, G., Liu, H., Lv, P. and Zhang B., 2012. Geogrid-reinforced lime-treated cohesive soil retaining wall: Case study and implications. Geotext. Geomembranes, 35(0): 112-118.
  • Zandieh, A., Yasrobi, S., 2010. Study of factors affecting the compressive strength of sandy soil stabilized with polymer, Geotechnical and Geological Engineering, 28(2), 139–145.
  • Wang, D., Abriak, N.E., Zentar, R., Chen, W., 2013. Effect of Lime Treatment on Geotechnical Properties of Dunkirk Sediments in France, Road Materials and Pavement Design, 14(3), 485-503.
  • Wild, S., Kinuthia, J., Robinson, R. and Humphreys, I., 1996. Effects of ground granulated blast furnace slag (GGBS) on the strength and swelling properties of lime-stabilized kaolinite in the presence of sulphates. Clay Miner., 31(3): 423-433.
Toplam 82 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Yasemin Aslan Topçuoğlu 0000-0002-3135-5926

Zülfü Gürocak 0000-0002-1049-8346

Yayımlanma Tarihi 15 Temmuz 2019
Gönderilme Tarihi 8 Nisan 2019
Kabul Tarihi 21 Mayıs 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 9 Sayı: 3

Kaynak Göster

APA Aslan Topçuoğlu, Y., & Gürocak, Z. (2019). Yüksek Plastisiteli Killerin Stabilizasyonu ve Dokusal Değişimler: Bir Taramalı Elektron Mikroskobu (SEM) Çalışması. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 9(3), 588-599. https://doi.org/10.17714/gumusfenbil.550905