Araştırma Makalesi
BibTex RIS Kaynak Göster

Helis Hiperyüzeyleri Tarafından Elde Edilen Konvolüsyon Manifoldların Karakterizasyonları Üzerine

Yıl 2020, Cilt: 10 Sayı: 3, 631 - 640, 15.07.2020
https://doi.org/10.17714/gumusfenbil.617238

Öz

Bu
çalışmada, düzlemsel eğrilerden elde edilen iki helis hiperyüzey
immersiyonlarının tensör çarpımları tarafından elde edilen bir altmanifold
oluşturuldu. Bu altmanifoldun, konvolüsyon metrik ile birlikte bir konvolüsyon manifold
olduğu görüldü ve bu manifoldun minimalliği incelendi. Daha sonra aynı
altmanifoldun tamamen geodezikliğine bakılarak bazı karakterizasyonlar verildi.

Kaynakça

  • Aksoy, A., 2008. Tensör Çarpım İmmersiyonlarının Geometrisi. Phd Thesis. İnönü Üniversitesi Fen Bilimleri Enstitüsü, Malatya, 107s.
  • Arslan, K., Ezentas, R., Mihai, I., Murathan, C. and Özgür, C., 2001.Tensor Product Surfaces of a Euclidean Space Curve and a Euclidean Plane Curve, Beitra ̈ge zur Algebra und Geometrie. 42 (2), 523-530.
  • Barrera Cadena, C., J. Di Scala, A., Ruiz-Hernández, G., 2015. Helix Surfaces in Euclidean Spaces. Beitra ̈ge zur Algebra und Geometrie, 56, 551–573.
  • Chen, B.Y., 1973. Geometry of Submanifolds, M. Dekker, New York, 298p.
  • Chen, B.Y., 2002. Convolution of Riemannian Manifolds and its Applications. Bulletin of the Australian Mathematical Society, 66(2), 177-191.
  • Chen, B.Y., 2003. More on Convolution of Riemannian Manifolds. Contributions to Algebra and Geometry, 44(1), 9-24.
  • Decruyenaere, F., Dillen, F., Verstraelen, L. and Vrancken, L., 1993. The Semiring of Immersions of Manifolds. Beiträge Algebra Geometrie (Contrib. Alg. Geom.), 34, 209-215.
  • Di Scala, AJ., Ruiz-Hernández, G., 2009. Helix Submanifolds of Euclidean Spaces. Monatshefte für Mathematik 157, 205–215.
  • Di Scala, AJ., Ruiz- Hernández, G., 2010. Higher Codimensional Euclidean Helix Submanifolds. Kodai Mathematical Journal. 33(2), 192-210.
  • Di Scala, AJ., Ruiz-Hernández, G., 2016. Minimal Helix Submanifolds and Minimal Riemannian Foliations. Boletín de la Sociedad Matemática Mexicana, 22, 229–250.
  • Fetcu, D., 2015. A Classification Result for Helix Surfaces with Parallel Mean Curvature in Product Spaces. Arkiv för Matematik, 53, 249–258.
  • Kula, L., Ekmekci, N., Yaylı, Y., İlarslan, K., 2010. Characterizations of Slant Helices in Euclidean 3-Space. Turkish Journal of Mathematics, 34, 261–273.
  • Küçükarslan, Y.Z., Yıldırım, Y.M., 2018. On k-Type 2-Degenerate Slant Helices in 4-Dimensional Minkowski Space-Time. Journal of Advanced Physics, 7(1), 147-151.
  • Mihai, I., Rosca, R., Verstraelen, L., Vrancken, L., 1994/1995. Tensor Product Surfaces of Euclidean Planar Curves. Rendiconti del Seminario Matematico di Messina, 3, 181-188.
  • O'neill, B., 1983.Semi-Riemannian Geometry, Academic Press, New York, 483p.
  • Zıplar, E., 2012. Helix Hypersurfaces and Special Curves. International Journal of Contemporary Mathematical Sciences, 7( 25), 1233–1245.

On the Characterizations of Convolution Manifolds Obtained by Helix Hypersurfaces

Yıl 2020, Cilt: 10 Sayı: 3, 631 - 640, 15.07.2020
https://doi.org/10.17714/gumusfenbil.617238

Öz


In this study, a submanifold obtained by tensor product of the immersions of two helix hypersurfaces obtained by planar curves is constructed. It is seen that, this submanifold is a convolution manifold with convolution metric and  its minimality is examined. After, some characterizations are given by looking at the totally geodesic of same submanifold.

Kaynakça

  • Aksoy, A., 2008. Tensör Çarpım İmmersiyonlarının Geometrisi. Phd Thesis. İnönü Üniversitesi Fen Bilimleri Enstitüsü, Malatya, 107s.
  • Arslan, K., Ezentas, R., Mihai, I., Murathan, C. and Özgür, C., 2001.Tensor Product Surfaces of a Euclidean Space Curve and a Euclidean Plane Curve, Beitra ̈ge zur Algebra und Geometrie. 42 (2), 523-530.
  • Barrera Cadena, C., J. Di Scala, A., Ruiz-Hernández, G., 2015. Helix Surfaces in Euclidean Spaces. Beitra ̈ge zur Algebra und Geometrie, 56, 551–573.
  • Chen, B.Y., 1973. Geometry of Submanifolds, M. Dekker, New York, 298p.
  • Chen, B.Y., 2002. Convolution of Riemannian Manifolds and its Applications. Bulletin of the Australian Mathematical Society, 66(2), 177-191.
  • Chen, B.Y., 2003. More on Convolution of Riemannian Manifolds. Contributions to Algebra and Geometry, 44(1), 9-24.
  • Decruyenaere, F., Dillen, F., Verstraelen, L. and Vrancken, L., 1993. The Semiring of Immersions of Manifolds. Beiträge Algebra Geometrie (Contrib. Alg. Geom.), 34, 209-215.
  • Di Scala, AJ., Ruiz-Hernández, G., 2009. Helix Submanifolds of Euclidean Spaces. Monatshefte für Mathematik 157, 205–215.
  • Di Scala, AJ., Ruiz- Hernández, G., 2010. Higher Codimensional Euclidean Helix Submanifolds. Kodai Mathematical Journal. 33(2), 192-210.
  • Di Scala, AJ., Ruiz-Hernández, G., 2016. Minimal Helix Submanifolds and Minimal Riemannian Foliations. Boletín de la Sociedad Matemática Mexicana, 22, 229–250.
  • Fetcu, D., 2015. A Classification Result for Helix Surfaces with Parallel Mean Curvature in Product Spaces. Arkiv för Matematik, 53, 249–258.
  • Kula, L., Ekmekci, N., Yaylı, Y., İlarslan, K., 2010. Characterizations of Slant Helices in Euclidean 3-Space. Turkish Journal of Mathematics, 34, 261–273.
  • Küçükarslan, Y.Z., Yıldırım, Y.M., 2018. On k-Type 2-Degenerate Slant Helices in 4-Dimensional Minkowski Space-Time. Journal of Advanced Physics, 7(1), 147-151.
  • Mihai, I., Rosca, R., Verstraelen, L., Vrancken, L., 1994/1995. Tensor Product Surfaces of Euclidean Planar Curves. Rendiconti del Seminario Matematico di Messina, 3, 181-188.
  • O'neill, B., 1983.Semi-Riemannian Geometry, Academic Press, New York, 483p.
  • Zıplar, E., 2012. Helix Hypersurfaces and Special Curves. International Journal of Contemporary Mathematical Sciences, 7( 25), 1233–1245.
Toplam 16 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Makaleler
Yazarlar

Sema Kazan 0000-0002-8771-9506

Yayımlanma Tarihi 15 Temmuz 2020
Gönderilme Tarihi 9 Eylül 2019
Kabul Tarihi 13 Mayıs 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 10 Sayı: 3

Kaynak Göster

APA Kazan, S. (2020). Helis Hiperyüzeyleri Tarafından Elde Edilen Konvolüsyon Manifoldların Karakterizasyonları Üzerine. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 10(3), 631-640. https://doi.org/10.17714/gumusfenbil.617238