Araştırma Makalesi
BibTex RIS Kaynak Göster

Ponza ile bakır iyonlarının ve kurşun iyonlarının adsorpsiyon karakteristikleri

Yıl 2022, Cilt: 12 Sayı: 2, 581 - 596, 15.04.2022
https://doi.org/10.17714/gumusfenbil.1003279

Öz

Ağır metal iyonları sahip oldukları toksik etkilerinden dolayı canlı organizmalara ve canlıların yaşadıkları çevreye zarar verebilmektedirler. Ağır metaller ile kirlenmiş su, toprak ve havanın iyileştirilmesi gerekmektedir. Bu iyonları uzaklaştırmak için kullanılan geleneksel yöntemler arasında adsorpsiyon düşük maliyetli ve çevre dostu yöntemlerden biridir. Bu çalışmada, kesikli bir sistemde, ponza kullanılarak çözeltilerden Cu(II) ve Pb(II) metal iyonlarının uzaklaştırılması amaçlanmıştır. Çalışmada, adsorban miktarı etkisi (0.1-0.5g), Cu(II) ve Pb(II) iyon çözeltilerinin derişim etkisi (Cu(II) için; 3.2-31.8 ppm, Pb(II) için; 10.2-103.6 ppm), çözeltilerin pH etkisi (Cu(II) için 3-6.1(doğal pH), Pb(II) için 3-5.25(doğal pH)) gibi değişken parametrelerin etkileri incelenmiştir. Çözeltilerin iyon derişimlerinin arttırılmasıyla adsorpsiyon veriminin azaldığı, pH değerinin ve adsorban miktarının arttırılması ile adsorpsiyon veriminin arttığı belirlenmiştir. Adsorban miktarının 0.4 g, çözelti iyon derişiminin 6.4 ppm ve pH değerinin 6.1 olduğu optimum şartlarda %91 bakır giderim verimi elde edilirken adsorban miktarının 0.4 g, çözelti iyon derişiminin 20.7 ppm ve pH değerinin 5.2 olduğu optimum şartlarda %97.7 kurşun giderim verimi elde edilmiştir. Deneysel olarak elde edilen adsorpsiyon verilerine Langmuir, Freundlich, Temkin ve Harkins-Jura adsorpsiyon izoterm modelleri uygulanarak modellenmiş ve izoterm sabitleri hesaplanmıştır. Bakır ve kurşun iyonlarının adsorpsiyonunda Freundlich izoterm modeli deney verilerine en uygun model olarak belirlenmiştir. Bakır için ponzanın maksimum adsorplama kapasitesi 2.55 mg g-1, kurşun için ponzanın maksimum adsorplama kapasitesi 10.28 mg g-1 olarak bulunmuştur. Adsorpsiyon kinetiklerinin yalancı ikinci mertebeden tepkime kinetik modeline daha uyumlu olduğu belirlenmiştir. Farklı sıcaklıklarda standart serbest enerji değişimi (ΔG°) hesaplanmış, buna bağlı olarak adsorpsiyon reaksiyonunun entalpi (ΔH°) ve entropi (ΔS°) değerleri belirlenmiştir. Elde edilen değerlerde ponza üzerine bakır ve kurşun iyonlarının adsorpsiyonu 20-50°C arasında ekzotermik olduğunu göstermiştir. Yapılan çalışmada elde edilen sonuçlar, diğer adsorbanlarla karşılaştırıldığında ponzanın sulu çözeltilerden ağır metallerin gideriminde etkin, ekonomik ve alternatif bir adsorban malzemesi olabileceğini göstermiştir.

Kaynakça

  • Al-Jlil, S.A., & Alsewailem, F.D. (2009). Saudi Arabian clays for lead removal in wastewater, Applied. Clay Science. 42(3-4), 671–674. https://doi.org/10.1016/j.clay.2008.03.012
  • Al-Jlil, S.A. (2015). Kinetic study of adsorption of chromium and lead ions on bentonite clay using novel internal series model, Trends in Applied. Sciences. Research. 10(1), 38–53. https://dx.doi.org/10.3923/tasr.2015.38.53
  • Akbal, F. (2005). Adsorption of basic dyes from aqueous solution onto pumice powder. Journal of Colloid and Interace Sciences, 286(2), 455-458. http://dx.doi.org/10.1016/j.jcis.2005.01.036
  • Bayram, T., Bucak. S., & Ozturk, D. (2020). BR13 dye removal using sodium dodecyl sulfate modified montmorillonite: equilibrium, thermodynamic, kinetic and reusability studies. Chemical Engineering and Processing-Process Intensification, 158, 108186. https://doi.org/10.1016/j.cep.2020.108186
  • Benek, V. (2015). Van bölgesindeki doğal pomza taşının bazı ağır metallerin adsorpsiyonunda kullanılması. [Yüksek Lisans Tezi, Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü].
  • Chotpantarat, S., Ong, S., Sutthirat, C., & Osathaphan, K. (2011). Competitive sorption and transport of Pb2+, Ni2+, Mn2+, and Zn2+ in lateritic soil columns. Journal of Hazardous Materials, 190, 391–396. https://doi.org/10.1016/j.jhazmat.2011.03.058
  • Dankova, Z., Bekényiová, A., Štyriaková, I., & Fedorová, E. (2015). Study of cu(II) adsorption by siderite and kaolin. Procedia. Earth and Planetary Science., 15, 821– 826. https://doi.org/10.1016/j.proeps.2015.08.131
  • Dawodu, F.A., Akpomie, G.K., & Ejikeme, P.C.N. (2012). Equilibrium, thermodynamic and kinetic studies on the adsorption of lead (II) from solution by ‘‘Agbani Clay”. Research Journal of Engineering Sciences,1(6), 9–17. Demirkıran, N. (2015). Copper adsorption by natural manganese dioxide. Transactions of Nonferrous Metals Society of China, 25(2), 647-653. https://doi.org/10.1016/S1003-6326(15)63648-2
  • El-Eswed, B., Alshaaer, M., Yousef, İ.R., Hamadneh, I., & Khalili, F. (2012). Adsorption of Cu (II), Ni(II), Zn(II), Cd(II) and Pb(II) onto kaolin/zeolite based- geopolymers. Advances in Materials Physics and Chemistry, 2(4), 119-125. http://dx.doi.org/10.4236/ampc.2012.24B032
  • Erdem, B. Özcan, A., Gök, Ö., & Özcan, A.S. (2009). Immobilization of 2,2-dipyridyl onto bentonite and its adsorption behavior of copper(II) ions, Journal of Hazardous Materials. 163(1), 418–426. https://doi.org/10.1016/j.jhazmat.2008.06.112
  • Ersoy, B., Sariişik, A., Dikmen, S., & Sariişik, G. (2010). Characterization of acidic pumice and determination of its electrokinetic properties in water. Powder Technology, 197(1-2), 129-135. http://dx.doi.org/10.1016/j.powtec.2009.09.005
  • Ertaş, M., Acemioğlu, B., Alma, M.H., & Usta, M. (2010). Removal of methylene blue from aqueous solution using cotton stalk, cotton waste and cotton dust. Journal of Hazardous Materials, 183(1-3), 421-427. https://doi.org/10.1016/j.jhazmat.2010.07.041
  • Faghihian, H., & Nejati-Yazdinejad, M. (2009). A comparative study of the sorption of Cd (II) and Pb(II) ions from aqueous solution by local bentonite and clinoptilolite, Adsorption. Science & Technology. 27(1), 107–115. https://doi.org/10.1260/026361709788921588
  • Ghassabzadeh, H., Torab-Mostaedi, M., Mohaddespour, A., Maragheh, M.G., Ahmadi, S.J., & Zaheri, P. (2010). Characterizations of Co (II) and Pb (II) removal process from aqueous solutions using expanded perlite. Desalination, 261(1-2),73-79. http://dx.doi.org/10.1016/j.desal.2010.05.028
  • Gupta, S.S., & Bhattacharyya, K.G. (2008). Immobilization of Pb(II), Cd(II) and Ni(II) ions on kaolinite and montmorillonite surfaces from aqueous medium, Journal of Environmental. Management 87(1), 46–58. https://doi.org/10.1016/j.jenvman.2007.01.048
  • Halas, P., Kolodynska, D., Plaza, A., Geca, M. & Hubicki, Z. (2017). Modified fly ash and zeolites as an effective adsorbent for metal ions from aqueous solution. Adsorption Science & Technology. 35(5-6), 519-533. https://doi.org/10.1177/0263617417700420
  • Harman, B.I., & Genisoğlu, M. (2016). Synthesis and characterization of pumice-supported nzvı for removal of copper from waters. Advances in Materials Science and Engineering, 1-10. https://doi.org/10.1155/2016/4372136
  • Hasan, S., Ghosh, T.K, Viswanath, D.S., & Boddu, V.M. (2008). Dispersion of chitosan on perlite for enhancement of copper(II) adsorption capacity. Journal of Hazardous Materials, 152 (2), 826–837. https://doi.org/10.1016/j.jhazmat.2007.07.078
  • Hızal, J., Apak, R., & Demirçivi, P. (2012). Kaolen bazlı kil mineralleri üzerinde, hümik asidin bulunduğu ve bulunmadığı sistemlerde ağır metal katyonlarının tek başına ve yarışmalı adsorpsiyonunun yüzey kompleksleşme modeliyle açıklanması. Sakarya Üniversitesi Fen Edebiyat Dergisi, 14 (1), 63-81.
  • Ijagbemi, C.O., Baek, M. & Kim, D. (2009). Montmorillonite surface properties and sorption characteristics for heavy metal removal from aqueous solutions, Journal of Hazardous. Materials, 166(1), 538–546. https://doi.org/10.1016/j.jhazmat.2008.11.085
  • Ikhsan, J., Johnson, B.B., & Wells, J.D. (1999). Comparative study of the adsorption of transition metals on kaolinite. Journal of Colloid and Interface Science, 217(2), 403–410. https://doi.org/10.1006/jcis.1999.6377
  • Irani, M., Amjadi, M., & Mousavian, M.A. (2011). Comparative study of lead sorption onto natural perlite, dolomite and diatomite. Chemical Engineering Journal, 178, 317-323. https://doi.org/10.1016/j.cej.2011.10.011
  • Ismail, A.I.M., El-Shafey, O.I., Amr, M.H.A., & El-Maghraby, M.S. (2014). Pumice characteristics and their utilization on the synthesis of mesoporous minerals and on the removal of heavy metals. International Scholarly Research Notices, 1-9. https://doi.org/10.1155/2014/259379
  • Kar, F., Yılgın, M., & Duranay, N. (2019). Aktifleştirilmiş zeolit ve polivinilprolidon kullanılarak sulu çözeltiden metilen mavisinin giderilmesinde adsorpsiyon parametrelerinin belirlenmesi. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 7(1), 1-14. https://doi.org/10.29130/dubited.472089
  • Karapınar, N., & Donat, R., (2009). Adsorption behaviour of Cu2+ and Cd2+ onto natural bentonite. Desalination, 249 (1),123-129. https://doi.org/10.1016/j.desal.2008.12.046
  • Khan, T. A., Chaudhry, S.A., & Ali, I. (2015) Equilibrium uptake, isoterhm and kinetic studies of Cd (II) adsorption onto iron oxide activated red mud from aqueous solution. Journal of Molecular Liquids, 202, 165-175. https://doi.org/10.1016/j.molliq.2014.12.021
  • Kul, A.R., Elik, H., & Benek, V. (2019). Van pomzası üzerinde kurşun iyonunun adsorpsiyon kinetiği. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 35(2), 26-31.
  • Lin, S.H., & Juang, R. (2002). Heavy metal removal from water by sorption using surfactant-modified montmorillonite. Journal of Hazardous Materials, 92(3), 315–326. https://doi.org/10.1016/S0304-3894(02)00026-2
  • Madrakian, T., Afkhami, A., & Ahmadi, M. (2012). Adsorption and kinetic studies of seven different organic dyes onto magnetite nanoparticles loaded tea waste and removal of them from wastewater samples. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 99(15), 102-109. https://doi.org/10.1016/j.saa.2012.09.025
  • Mohapatra, M., Mohapatra, L., Singh, P., Anand, S., & Mishra, B.K. (2010). A comparative study on Pb(II), Cd(II), Cu(II), Co(II) adsorption from single and binary aqueous solutions on additive assisted nano-structured goethite, International Journal of Engineering Science and Technology. 2(8), 89–103. https://doi.org/10.4314/ijest.v2i8.63784
  • Okumuş, Z. Ç., & Doğan, T.H. (2019). Biyodizeldeki suyun reçine ile uzaklaştırılması: adsorpsiyon izotermi, kinetiği ve termodinamik incelenmesi. Avrupa Bilim ve Teknoloji Dergisi, (15), 561-570. https://doi.org/10.31590/ejosat.535977
  • Öztürk, D., & Şahan, T. (2015). Design and optimization of Cu(II) adsorption conditions from aqueous solutions by low-cost adsorbent pumice with response surface methodology. Polish Journal of Environmental Studies, 24(4), 1749–1756. https://doi.org/10.15244/pjoes/40270
  • Parlayıcı, Ş., & Altun, T. (2018). Kitosan kaplı kaolin boncukların sulu çözeltilerden krom(VI) uzaklaştırılmasında adsorban olarak kullanımı. Selçuk Üniversitesi Mühendislik Bilim ve Teknik Dergisi, 6(1), 140-151. https://doi.org/10.15317/Scitech.2018.121
  • Phuong, D.T.M., Miyanishi, T., Okayama, T., & Kose, R. (2016). Pore characteristics & adsorption capacitıes of bıochars derived from rice residues as affected by variety and pyrolysıs temperature. The American Journal of Innovative Research and Applied Science.
  • Puls, R.W. (1986). Adsorptıon of heavy metals on soıl clays. [PhD Thesis, The Universty of Arizona].
  • Qu, J., Tian, X., Jiang, Z., Cao, B., Akindoliea, M.S., Hu, Q., Feng, C., Feng, Y., Meng, X., & Zhang, Y. (2020). Multi-component adsorption of Pb (II), Cd(II) and Ni(II) onto microwavefunctionalized cellulose: kinetics, isotherms, thermodynamics, mechanisms and application for electroplating wastewater purification. Journal of Hazardous Materials, 387,121718. https://doi.org/10.1016/j.jhazmat.2019.121718
  • Ozdes, D., Duran, C. & Senturk, H. B. (2011). Adsorptive removal of Cd(II) and Pb(II) ions from aqueous solutions by using Turkish illitic clay, Journal Environmental Management 92(12), 3082–3090. http://dx.doi.org/10.1016/j.jenvman.2011.07.022
  • Samarghandi, M.R., Zarrabi, M., Sepehr, M.N., Amrane, A., Safari, G.H., & Bashiri, S. (2012). Application of acidic treated pumice as an adsorbent for the removal of azo dye from aqueous solutions: kinetic, equilibrium and thermodynamic studies. Iranian Journal of Environmental Health Sciences & Engineering, 9(1), 9. https://doi.org/10.1186/1735-2746-9-9
  • Samarghandi, M.R., Zarrabi, M., Amrane, A., Soori, M.M., & Sepehr, M.N. (2013). Removal of acid black dye by pumice stone as a low cost adsorbent: kinetic, thermodynamıc and equılıbrıum studies. Environmental Engineering and Management Journal, 12(11), 2137-2147. http://dx.doi.org/10.30638/eemj.2013.265
  • Sarı, A, Tuzen, M., Cıtak, D., & Soylak, M. (2007). Adsorption characteristics of Cu(II) and Pb(II) onto expanded perlite from aqueous solution. Journal of Hazadous Materials, 148 (1-2), 387-394. https://doi.org/10.1016/j.jhazmat.2007.02.052
  • Shahmohammadi- Kalalagh, Sh., Babazadeh, H., Nazemi, A.H., & Manshouri, M. (2011) Isotherm and kinetic studies on adsorption of Pb, Zn and Cu by kaolinite, Caspian Journal Environmental Sciences. 9(2), 243–255.
  • Sharma, Y.C., Prasad, G.& Rupainwar, D.C. (1991). Removal of Ni(II) from aqueous solutions by sorption. International Journal of Environmental Studies. 37(3),183-191. https://doi.org/10.1080/00207239108710629
  • Şahan, T., & Öztürk, D. (2014). Investigation Pb(II) adsorption onto pumice samples: application of optimization methods based on fractional factorial design and response surface methodology. Clean Technologies and Environmental Policy, 16(5), 819-831. http://dx.doi.org/10.1007/s10098-013-0673-8
  • Tanaydın, B.Z., Tanaydın, M.K., İnce, M., & Demirkıran, N. (2020). Bakır ve kadmiyumun perlit ile adsorpsiyonu ve adsorpsiyon özelliklerinin karşılaştırılması. International Journal of.Pure and Applied Sciences, 6(2), 208-218. https://doi.org/10.29132/ijpas.746970
  • Tosun, E., Tanaydın, M.K., Özdemir, Turhan, G.D., & Demirkıran, N. (2016). Sulu çözeltilerden lewatit S-108 katyon değişim reçinesiyle bakır iyonlarının adsorpsiyonu. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, 3(5),77-87.
  • Tözüm, S. (2009). Ponza ile zeytin atık sularından (karasu) adsorpsiyonla kirleticilerin giderimi. [Yüksek Lisans Tezi, Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü].
  • Turan, N.G., & Ozgonenel, O. (2013). Study of montmorillonite clay for the removal of copper (II) by adsorption: full factorial design approach and cascade forward neural network. The Scientific World Journal, 1-11. https://doi.org/10.1155/2013/342628
  • Vijayakumar, G., Tamilarasan, R., & Dharmendirakumar, M. (2012). Adsorption, kinetic, equilibrium and thermodynamic studies on the removal of basic dye Rhodamine- B from aqueous solutions by the use of natural adsorbent perlite. Journal of Materials and Environmental Science, 3(1), 157-170.
  • Vivian, J., Matına, K., & Guyo, U. (2017). Removal of Pb(II) and Cd(II) from aqueous solution using alkaline-modified pumice stone powder (PSP): equilibrium, kinetic, and thermodynamic studies. Turkish Journal of Chemistry, 41, 748-759. http://dx.doi.org/10.3906/kim-1701-40
  • Wang, L., Lin, C., & Wu, F. (2010). Kinetic study of adsorption of copper (II) ion from solution using rice hull ash. Journal of Taiwan Institute of Chemical Engineers, 41(5), 599-605. https://doi.org/10.1016/j.jtice.2010.01.003
  • Williams, D. (2014). Essential biomaterials science (1nd ed.). Cambridge Universty Press, Yanık, S. (2007). Bazik pomzaların beton agregası olarak kullanılabilirliği [Yüksek Lisans Tezi, Çukurova Üniversitesi Fen Bilimleri Enstitüsü].
  • Zhi-rong, L., & Shao-qi, Z. (2010) Adsorption of copper and nickel on Na-bentonite, Process. Safety and Environmental. Protection. 88(1), 62–66. https://doi.org/10.1016/j.psep.2009.09.001

Adsorption characteristics of copper and lead ions with pumice

Yıl 2022, Cilt: 12 Sayı: 2, 581 - 596, 15.04.2022
https://doi.org/10.17714/gumusfenbil.1003279

Öz

Heavy metal ions can harm living organisms and the environment in which they live, due to of their toxicity values. It is necessary to improve water, soil and air contaminated with heavy metals. Among the conventional methods used to remove these ions, adsorption is one of the low cost and environmentally friendly methods. In this study, it was aimed to remove Cu (II) and Pb (II) metal ions from solutions using pumice in a batch system. In the study, the effects of variable parameters such as the effect of the amount of adsorbent (0.1-0.5g), the effect of concentration of Cu(II) and Pb(II) ion solutions(for Cu(II);3.2- 31.8 ppm for Pb(II); 10.2-103.6 ppm), the effect of pH of the solutions(for Cu(II) 3-6.1 (natural pH), Pb(II) 3-5.25(natural pH) were investigated. It was determined that the adsorption efficiency decreased by increasing the ion concentrations of the solutions, and the adsorption efficiency increased by increasing the pH value and the amount of adsorbent.While 91% copper removal efficiency was obtained under optimum conditions where adsorbent amount was 0.4g, solution ion concentration was 6.4 ppm and pH value was 6.1, 97.7% lead removal efficiency was obtained under optimum conditions where adsorbent amount was 0.4g, solution ion concentration was 20.7 ppm and pH value was 5.2. The adsorption data obtained experimentally were modeled by applying Langmuir, Freundlich, Temkin and Harkins-Jura adsorption isotherm models and the isotherm constants were calculated. In the adsorption of copper and lead ions, the Freundlich isotherm model was the most suitable model for the experimental data. The maximum adsorption capacity of pumice for copper was found to be 2.55 mg g-1, and the maximum adsorption capacity of pumice for lead was 10.28 mg g-1. It was determined that the adsorption kinetics were more compatible with the pseudo-second-order reaction kinetic model. The standard free energy change (ΔG°) at different temperatures was calculated, and accordingly the enthalpy (ΔH°) and entropy (ΔS°) values of the adsorption reaction were determined. The values obtained showed that the adsorption of copper and lead ions on pumice was exothermic between 20-50°C and was applicable. The results obtained in the study showed that pumice can be an effective, economical and alternative adsorbent material in the removal of heavy metals from aqueous solutions when compared with other commercially used adsorbents.

Kaynakça

  • Al-Jlil, S.A., & Alsewailem, F.D. (2009). Saudi Arabian clays for lead removal in wastewater, Applied. Clay Science. 42(3-4), 671–674. https://doi.org/10.1016/j.clay.2008.03.012
  • Al-Jlil, S.A. (2015). Kinetic study of adsorption of chromium and lead ions on bentonite clay using novel internal series model, Trends in Applied. Sciences. Research. 10(1), 38–53. https://dx.doi.org/10.3923/tasr.2015.38.53
  • Akbal, F. (2005). Adsorption of basic dyes from aqueous solution onto pumice powder. Journal of Colloid and Interace Sciences, 286(2), 455-458. http://dx.doi.org/10.1016/j.jcis.2005.01.036
  • Bayram, T., Bucak. S., & Ozturk, D. (2020). BR13 dye removal using sodium dodecyl sulfate modified montmorillonite: equilibrium, thermodynamic, kinetic and reusability studies. Chemical Engineering and Processing-Process Intensification, 158, 108186. https://doi.org/10.1016/j.cep.2020.108186
  • Benek, V. (2015). Van bölgesindeki doğal pomza taşının bazı ağır metallerin adsorpsiyonunda kullanılması. [Yüksek Lisans Tezi, Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü].
  • Chotpantarat, S., Ong, S., Sutthirat, C., & Osathaphan, K. (2011). Competitive sorption and transport of Pb2+, Ni2+, Mn2+, and Zn2+ in lateritic soil columns. Journal of Hazardous Materials, 190, 391–396. https://doi.org/10.1016/j.jhazmat.2011.03.058
  • Dankova, Z., Bekényiová, A., Štyriaková, I., & Fedorová, E. (2015). Study of cu(II) adsorption by siderite and kaolin. Procedia. Earth and Planetary Science., 15, 821– 826. https://doi.org/10.1016/j.proeps.2015.08.131
  • Dawodu, F.A., Akpomie, G.K., & Ejikeme, P.C.N. (2012). Equilibrium, thermodynamic and kinetic studies on the adsorption of lead (II) from solution by ‘‘Agbani Clay”. Research Journal of Engineering Sciences,1(6), 9–17. Demirkıran, N. (2015). Copper adsorption by natural manganese dioxide. Transactions of Nonferrous Metals Society of China, 25(2), 647-653. https://doi.org/10.1016/S1003-6326(15)63648-2
  • El-Eswed, B., Alshaaer, M., Yousef, İ.R., Hamadneh, I., & Khalili, F. (2012). Adsorption of Cu (II), Ni(II), Zn(II), Cd(II) and Pb(II) onto kaolin/zeolite based- geopolymers. Advances in Materials Physics and Chemistry, 2(4), 119-125. http://dx.doi.org/10.4236/ampc.2012.24B032
  • Erdem, B. Özcan, A., Gök, Ö., & Özcan, A.S. (2009). Immobilization of 2,2-dipyridyl onto bentonite and its adsorption behavior of copper(II) ions, Journal of Hazardous Materials. 163(1), 418–426. https://doi.org/10.1016/j.jhazmat.2008.06.112
  • Ersoy, B., Sariişik, A., Dikmen, S., & Sariişik, G. (2010). Characterization of acidic pumice and determination of its electrokinetic properties in water. Powder Technology, 197(1-2), 129-135. http://dx.doi.org/10.1016/j.powtec.2009.09.005
  • Ertaş, M., Acemioğlu, B., Alma, M.H., & Usta, M. (2010). Removal of methylene blue from aqueous solution using cotton stalk, cotton waste and cotton dust. Journal of Hazardous Materials, 183(1-3), 421-427. https://doi.org/10.1016/j.jhazmat.2010.07.041
  • Faghihian, H., & Nejati-Yazdinejad, M. (2009). A comparative study of the sorption of Cd (II) and Pb(II) ions from aqueous solution by local bentonite and clinoptilolite, Adsorption. Science & Technology. 27(1), 107–115. https://doi.org/10.1260/026361709788921588
  • Ghassabzadeh, H., Torab-Mostaedi, M., Mohaddespour, A., Maragheh, M.G., Ahmadi, S.J., & Zaheri, P. (2010). Characterizations of Co (II) and Pb (II) removal process from aqueous solutions using expanded perlite. Desalination, 261(1-2),73-79. http://dx.doi.org/10.1016/j.desal.2010.05.028
  • Gupta, S.S., & Bhattacharyya, K.G. (2008). Immobilization of Pb(II), Cd(II) and Ni(II) ions on kaolinite and montmorillonite surfaces from aqueous medium, Journal of Environmental. Management 87(1), 46–58. https://doi.org/10.1016/j.jenvman.2007.01.048
  • Halas, P., Kolodynska, D., Plaza, A., Geca, M. & Hubicki, Z. (2017). Modified fly ash and zeolites as an effective adsorbent for metal ions from aqueous solution. Adsorption Science & Technology. 35(5-6), 519-533. https://doi.org/10.1177/0263617417700420
  • Harman, B.I., & Genisoğlu, M. (2016). Synthesis and characterization of pumice-supported nzvı for removal of copper from waters. Advances in Materials Science and Engineering, 1-10. https://doi.org/10.1155/2016/4372136
  • Hasan, S., Ghosh, T.K, Viswanath, D.S., & Boddu, V.M. (2008). Dispersion of chitosan on perlite for enhancement of copper(II) adsorption capacity. Journal of Hazardous Materials, 152 (2), 826–837. https://doi.org/10.1016/j.jhazmat.2007.07.078
  • Hızal, J., Apak, R., & Demirçivi, P. (2012). Kaolen bazlı kil mineralleri üzerinde, hümik asidin bulunduğu ve bulunmadığı sistemlerde ağır metal katyonlarının tek başına ve yarışmalı adsorpsiyonunun yüzey kompleksleşme modeliyle açıklanması. Sakarya Üniversitesi Fen Edebiyat Dergisi, 14 (1), 63-81.
  • Ijagbemi, C.O., Baek, M. & Kim, D. (2009). Montmorillonite surface properties and sorption characteristics for heavy metal removal from aqueous solutions, Journal of Hazardous. Materials, 166(1), 538–546. https://doi.org/10.1016/j.jhazmat.2008.11.085
  • Ikhsan, J., Johnson, B.B., & Wells, J.D. (1999). Comparative study of the adsorption of transition metals on kaolinite. Journal of Colloid and Interface Science, 217(2), 403–410. https://doi.org/10.1006/jcis.1999.6377
  • Irani, M., Amjadi, M., & Mousavian, M.A. (2011). Comparative study of lead sorption onto natural perlite, dolomite and diatomite. Chemical Engineering Journal, 178, 317-323. https://doi.org/10.1016/j.cej.2011.10.011
  • Ismail, A.I.M., El-Shafey, O.I., Amr, M.H.A., & El-Maghraby, M.S. (2014). Pumice characteristics and their utilization on the synthesis of mesoporous minerals and on the removal of heavy metals. International Scholarly Research Notices, 1-9. https://doi.org/10.1155/2014/259379
  • Kar, F., Yılgın, M., & Duranay, N. (2019). Aktifleştirilmiş zeolit ve polivinilprolidon kullanılarak sulu çözeltiden metilen mavisinin giderilmesinde adsorpsiyon parametrelerinin belirlenmesi. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 7(1), 1-14. https://doi.org/10.29130/dubited.472089
  • Karapınar, N., & Donat, R., (2009). Adsorption behaviour of Cu2+ and Cd2+ onto natural bentonite. Desalination, 249 (1),123-129. https://doi.org/10.1016/j.desal.2008.12.046
  • Khan, T. A., Chaudhry, S.A., & Ali, I. (2015) Equilibrium uptake, isoterhm and kinetic studies of Cd (II) adsorption onto iron oxide activated red mud from aqueous solution. Journal of Molecular Liquids, 202, 165-175. https://doi.org/10.1016/j.molliq.2014.12.021
  • Kul, A.R., Elik, H., & Benek, V. (2019). Van pomzası üzerinde kurşun iyonunun adsorpsiyon kinetiği. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 35(2), 26-31.
  • Lin, S.H., & Juang, R. (2002). Heavy metal removal from water by sorption using surfactant-modified montmorillonite. Journal of Hazardous Materials, 92(3), 315–326. https://doi.org/10.1016/S0304-3894(02)00026-2
  • Madrakian, T., Afkhami, A., & Ahmadi, M. (2012). Adsorption and kinetic studies of seven different organic dyes onto magnetite nanoparticles loaded tea waste and removal of them from wastewater samples. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 99(15), 102-109. https://doi.org/10.1016/j.saa.2012.09.025
  • Mohapatra, M., Mohapatra, L., Singh, P., Anand, S., & Mishra, B.K. (2010). A comparative study on Pb(II), Cd(II), Cu(II), Co(II) adsorption from single and binary aqueous solutions on additive assisted nano-structured goethite, International Journal of Engineering Science and Technology. 2(8), 89–103. https://doi.org/10.4314/ijest.v2i8.63784
  • Okumuş, Z. Ç., & Doğan, T.H. (2019). Biyodizeldeki suyun reçine ile uzaklaştırılması: adsorpsiyon izotermi, kinetiği ve termodinamik incelenmesi. Avrupa Bilim ve Teknoloji Dergisi, (15), 561-570. https://doi.org/10.31590/ejosat.535977
  • Öztürk, D., & Şahan, T. (2015). Design and optimization of Cu(II) adsorption conditions from aqueous solutions by low-cost adsorbent pumice with response surface methodology. Polish Journal of Environmental Studies, 24(4), 1749–1756. https://doi.org/10.15244/pjoes/40270
  • Parlayıcı, Ş., & Altun, T. (2018). Kitosan kaplı kaolin boncukların sulu çözeltilerden krom(VI) uzaklaştırılmasında adsorban olarak kullanımı. Selçuk Üniversitesi Mühendislik Bilim ve Teknik Dergisi, 6(1), 140-151. https://doi.org/10.15317/Scitech.2018.121
  • Phuong, D.T.M., Miyanishi, T., Okayama, T., & Kose, R. (2016). Pore characteristics & adsorption capacitıes of bıochars derived from rice residues as affected by variety and pyrolysıs temperature. The American Journal of Innovative Research and Applied Science.
  • Puls, R.W. (1986). Adsorptıon of heavy metals on soıl clays. [PhD Thesis, The Universty of Arizona].
  • Qu, J., Tian, X., Jiang, Z., Cao, B., Akindoliea, M.S., Hu, Q., Feng, C., Feng, Y., Meng, X., & Zhang, Y. (2020). Multi-component adsorption of Pb (II), Cd(II) and Ni(II) onto microwavefunctionalized cellulose: kinetics, isotherms, thermodynamics, mechanisms and application for electroplating wastewater purification. Journal of Hazardous Materials, 387,121718. https://doi.org/10.1016/j.jhazmat.2019.121718
  • Ozdes, D., Duran, C. & Senturk, H. B. (2011). Adsorptive removal of Cd(II) and Pb(II) ions from aqueous solutions by using Turkish illitic clay, Journal Environmental Management 92(12), 3082–3090. http://dx.doi.org/10.1016/j.jenvman.2011.07.022
  • Samarghandi, M.R., Zarrabi, M., Sepehr, M.N., Amrane, A., Safari, G.H., & Bashiri, S. (2012). Application of acidic treated pumice as an adsorbent for the removal of azo dye from aqueous solutions: kinetic, equilibrium and thermodynamic studies. Iranian Journal of Environmental Health Sciences & Engineering, 9(1), 9. https://doi.org/10.1186/1735-2746-9-9
  • Samarghandi, M.R., Zarrabi, M., Amrane, A., Soori, M.M., & Sepehr, M.N. (2013). Removal of acid black dye by pumice stone as a low cost adsorbent: kinetic, thermodynamıc and equılıbrıum studies. Environmental Engineering and Management Journal, 12(11), 2137-2147. http://dx.doi.org/10.30638/eemj.2013.265
  • Sarı, A, Tuzen, M., Cıtak, D., & Soylak, M. (2007). Adsorption characteristics of Cu(II) and Pb(II) onto expanded perlite from aqueous solution. Journal of Hazadous Materials, 148 (1-2), 387-394. https://doi.org/10.1016/j.jhazmat.2007.02.052
  • Shahmohammadi- Kalalagh, Sh., Babazadeh, H., Nazemi, A.H., & Manshouri, M. (2011) Isotherm and kinetic studies on adsorption of Pb, Zn and Cu by kaolinite, Caspian Journal Environmental Sciences. 9(2), 243–255.
  • Sharma, Y.C., Prasad, G.& Rupainwar, D.C. (1991). Removal of Ni(II) from aqueous solutions by sorption. International Journal of Environmental Studies. 37(3),183-191. https://doi.org/10.1080/00207239108710629
  • Şahan, T., & Öztürk, D. (2014). Investigation Pb(II) adsorption onto pumice samples: application of optimization methods based on fractional factorial design and response surface methodology. Clean Technologies and Environmental Policy, 16(5), 819-831. http://dx.doi.org/10.1007/s10098-013-0673-8
  • Tanaydın, B.Z., Tanaydın, M.K., İnce, M., & Demirkıran, N. (2020). Bakır ve kadmiyumun perlit ile adsorpsiyonu ve adsorpsiyon özelliklerinin karşılaştırılması. International Journal of.Pure and Applied Sciences, 6(2), 208-218. https://doi.org/10.29132/ijpas.746970
  • Tosun, E., Tanaydın, M.K., Özdemir, Turhan, G.D., & Demirkıran, N. (2016). Sulu çözeltilerden lewatit S-108 katyon değişim reçinesiyle bakır iyonlarının adsorpsiyonu. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, 3(5),77-87.
  • Tözüm, S. (2009). Ponza ile zeytin atık sularından (karasu) adsorpsiyonla kirleticilerin giderimi. [Yüksek Lisans Tezi, Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü].
  • Turan, N.G., & Ozgonenel, O. (2013). Study of montmorillonite clay for the removal of copper (II) by adsorption: full factorial design approach and cascade forward neural network. The Scientific World Journal, 1-11. https://doi.org/10.1155/2013/342628
  • Vijayakumar, G., Tamilarasan, R., & Dharmendirakumar, M. (2012). Adsorption, kinetic, equilibrium and thermodynamic studies on the removal of basic dye Rhodamine- B from aqueous solutions by the use of natural adsorbent perlite. Journal of Materials and Environmental Science, 3(1), 157-170.
  • Vivian, J., Matına, K., & Guyo, U. (2017). Removal of Pb(II) and Cd(II) from aqueous solution using alkaline-modified pumice stone powder (PSP): equilibrium, kinetic, and thermodynamic studies. Turkish Journal of Chemistry, 41, 748-759. http://dx.doi.org/10.3906/kim-1701-40
  • Wang, L., Lin, C., & Wu, F. (2010). Kinetic study of adsorption of copper (II) ion from solution using rice hull ash. Journal of Taiwan Institute of Chemical Engineers, 41(5), 599-605. https://doi.org/10.1016/j.jtice.2010.01.003
  • Williams, D. (2014). Essential biomaterials science (1nd ed.). Cambridge Universty Press, Yanık, S. (2007). Bazik pomzaların beton agregası olarak kullanılabilirliği [Yüksek Lisans Tezi, Çukurova Üniversitesi Fen Bilimleri Enstitüsü].
  • Zhi-rong, L., & Shao-qi, Z. (2010) Adsorption of copper and nickel on Na-bentonite, Process. Safety and Environmental. Protection. 88(1), 62–66. https://doi.org/10.1016/j.psep.2009.09.001
Toplam 52 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Zümra Bakıcı Tanaydın 0000-0003-0376-0956

Mehmet Kayra Tanaydın 0000-0003-1696-0754

Muharrem Ince 0000-0003-2347-1748

Nizamettin Demirkıran 0000-0001-9021-2477

Yayımlanma Tarihi 15 Nisan 2022
Gönderilme Tarihi 1 Ekim 2021
Kabul Tarihi 19 Şubat 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 12 Sayı: 2

Kaynak Göster

APA Bakıcı Tanaydın, Z., Tanaydın, M. K., Ince, M., Demirkıran, N. (2022). Ponza ile bakır iyonlarının ve kurşun iyonlarının adsorpsiyon karakteristikleri. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 12(2), 581-596. https://doi.org/10.17714/gumusfenbil.1003279