Araştırma Makalesi
BibTex RIS Kaynak Göster

Fabrication of SnS thin film by rapid thermal processing: effect of annealing temperature in sulfurization process

Yıl 2022, Cilt: 12 Sayı: 2, 404 - 413, 15.04.2022
https://doi.org/10.17714/gumusfenbil.1006581

Öz

In this study, the effect of sulfurization temperature on properties of SnS thin films was investigated. The SnS thin films were fabricated by two-stage method includes deposition of SnS films by magnetron sputtering using a single SnS target, followed by annealing/sulfurization treatment in Rapid Thermal Processing (RTP) system at 225, 300 and 375 °C temperatures. Several characterization techniques such as XRD, Raman spectroscopy, EDX, optical transmission and Van der Pauw were used for analyses of the films. The EDX analyses showed that all the samples had almost stoichiometric (S/Sn~1) chemical composition. However, the amount of sulfur in the samples increased slightly as the sulfurization temperature increased. XRD pattern of the films exhibited constitution of orthorhombic SnS structure regardless of annealing temperature. The SnS2 secondary phase was observed in addition to orthorhombic SnS phase in the sample annealed at highest reaction temperature (375°C). Raman spectroscopy measurements of the films verified constitution of orthorhombic SnS structure. The band gap of the films exhibited distinction from 1.42 to 1.81 eV regarding to annealing temperature. The electrical characterization of the most promising SnS thin film sulfurized at 300°C had resistivity and charge carrier concentration values 1.07x104 Ω.cm and 1.70x1014 cm-3, respectively. Based on the all characterizations, it can be deduced that SnS thin film sulfurized at 300°C exhibited more outstanding structural and optical properties for potential solar cell applications.

Kaynakça

  • Arepalli, V. K., & Kim, J. (2018). Effect of substrate temperature on the structural and optical properties of radio frequency sputtered tin sulfide thin films for solar cell application. Thin Solid Films, 666, 34-39. https://doi.org/10.1016/j.tsf.2018.09.009
  • Arepalli, V. K., Shin, Y., & Kim, J. (2018). Influence of working pressure on the structural, optical, and electrical properties of rf-sputtered sns thin films. Superlattices and Microstructures, 122, 253-261. https://doi.org/10.1016/j.spmi.2018.08.001
  • Arepalli, V. K., Shin, Y., & Kim, J. (2019). Photovoltaic behavior of the room temperature grown rf-sputtered sns thin films. Optical Materials, 88, 594-600. v10.1016/j.optmat.2018.12.016
  • Baby, B. H., & Mohan, D. B. (2018). Phase optimization study of orthorhombic structured sns nanorods from ctab assisted polyol synthesis for higher efficiency thin film solar cells. Solar Energy, 174, 373-385. https://doi.org/10.1016/j.solener.2018.09.019
  • Baby, B. H., & Mohan, D. B. (2019). The effect of in-situ and post deposition annealing towards the structural optimization studies of rf sputtered sns and sn2s3 thin films for solar cell application. Solar Energy, 189, 207-218. https://doi.org/10.1016/j.solener.2019.07.059
  • Banai, R. E., Horn, M. W., & Brownson, J. R. S. (2016). A review of tin (ii) monosulfide and its potential as a photovoltaic absorber. Solar energy materials and solar cells, 150, 112-129. https://doi.org/10.1016/j.solmat.2015.12.001
  • Candelise, C., Winskel, M., & Gross, R. (2012). Implications for cdte and cigs technologies production costs of indium and tellurium scarcity. Progress in Photovoltaics, 20(6), 816-831. https://doi.org/10.1002/pip.2216
  • Ceylan, A. (2017). Synthesis of sns thin films via high vacuum sulfidation of sputtered sn thin films. Materials Letters, 201, 194-197. https://doi.org/10.1016/j.matlet.2017.05.022
  • Chalapathi, U., Poornaprakash, B., Choi, W. J., & Park, S. H. (2020). Ammonia(aq)-enhanced growth of cubic sns thin films by chemical bath deposition for solar cell applications. Applied Physics a-Materials Science & Processing, 126(8), 1-9. https://doi.org/10.1007/s00339-020-03763-4
  • Chandrasekhar, H., Humphreys, R., Zwick, U., & Cardona, M. (1977). Infrared and raman spectra of the iv-vi compounds sns and snse. Physical Review B, 15(4), 2177. https://doi.org/10.1103/PhysRevB.15.2177 Chopra, K. (1969). Thin film phenomena mcgraw-hill. New York, 19692, 196.
  • Di Mare, S., Menossi, D., Salavei, A., Artegiani, E., Piccinelli, F., Kumar, A., Mariotto, G., & Romeo, A. (2017). Sns thin film solar cells: Perspectives and limitations. Coatings, 7(2), 34. https://doi.org/10.3390/coatings7020034
  • Fairbrother, A., Fourdrinier, L., Fontané, X., Izquierdo-Roca, V., Dimitrievska, M., Pérez-Rodríguez, A. ,& Saucedo, E. (2014). Rapid thermal processing of cu2znsnse4 thin films. Í 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC). https://doi.org/10.1109/PVSC.2014.6925390
  • Fu, H. Y. (2018). Environmentally friendly and earth-abundant colloidal chalcogenide nanocrystals for photovoltaic applications. Journal of Materials Chemistry C, 6(3), 414-445. https://doi.org/10.1039/c7tc04952h
  • Gedi, S., Reddy, V. R. M., Kang, J. Y., & Jeon, C. W. (2017). Impact of high temperature and short period annealing on sns films deposited by e-beam evaporation. Applied Surface Science, 402, 463-468. https://doi.org/10.1016/j.apsusc.2017.01.113
  • Ghazali, A., Zainal, Z., Hussein, M. Z., & Kassim, A. (1998). Cathodic electrodeposition of sns in the presence of edta in aqueous media. Solar energy materials and solar cells, 55(3), 237-249. https://doi.org/10.1016/S0927-0248(98)00106-8
  • Guang-Pu, W., Zhi-Lin, Z., Wei-Ming, Z., Xiang-Hong, G., Wei-Qun, C., Tanamura, H., Yamaguchi, M., Noguchi, H., Nagatomo, T., & Omoto, O. (1994). Investigation on sns film by rf sputtering for photovoltaic application. Í Proceedings of 1994 IEEE 1st World Conference on Photovoltaic Energy Conversion-WCPEC (A Joint Conference of PVSC, PVSEC and PSEC). https://doi.org/10.1109/WCPEC.1994.519977
  • Guo, F. R., Guo, H. F., Zhang, K. Z., Yuan, N. Y., & Ding, J. N. (2017). Variations in structural and optoelectronic features of thermally co-evaporated sns films with different sn contents. Thin Solid Films, 642, 285-289. https://doi.org/10.1016/j.tsf.2017.09.031
  • Gurnani, C., Hawken, S. L., Hector, A. L., Huang, R., Jura, M., Levason, W., Perkins, J., Reid, G., & Stenning, G. B. (2018). Tin(iv) chalcogenoether complexes as single source precursors for the chemical vapour deposition of sne2 and sne (e= s, se) thin films. Dalton Transactions, 47(8), 2628-2637. https://doi.org/10.1039/C7DT03848H
  • Hartman, K., Johnson, J. L., Bertoni, M. I., Recht, D., Aziz, M. J., Scarpulla, M. A., & Buonassisi, T. (2011). Sns thin-films by rf sputtering at room temperature. Thin Solid Films, 519(21), 7421-7424. https://doi.org/10.1016/j.tsf.2010.12.186
  • Hasan, B. A., & Shallal, I. H. (2014). Structural and optical properties of sns thin films. Journal of Nanotechnology & Advance Materials(2), 43-49. https://doi.org/10.18576/jnam Jain, P., & Arun, P. (2013). Influence of grain size on the band-gap of annealed sns thin films. Thin Solid Films, 548, 241-246. https://doi.org/10.1016/j.tsf.2013.09.089
  • Javed, A., Khan, N., Bashir, S., Ahmad, M., & Bashir, M. (2020). Thickness dependent structural, electrical and optical properties of cubic sns thin films. Materials Chemistry and Physics, 246, 122831. https://doi.org/10.1016/j.matchemphys.2020.122831
  • Johnson, J. B., Jones, H., Latham, B. S., Parker, J. D., Engelken, R. D., & Barber, C. (1999). Optimization of photoconductivity in vacuum-evaporated tin sulfide thin films. Semiconductor Science and Technology, 14(6), 501-507. https://doi.org/10.1088/0268-1242/14/6/303
  • Kevin, P., Lewis, D. J., Raftery, J., Malik, M. A., & O'Brien, P. (2015). Thin films of tin(ii) sulphide (sns) by aerosol-assisted chemical vapour deposition (aacvd) using tin(ii) dithiocarbamates as single-source precursors. Journal of Crystal Growth, 415, 93-99. https://doi.org/10.1016/j.jcrysgro.2014.07.019
  • Koteeswara Reddy, N., Devika, M., & Gopal, E. (2015). Review on tin (ii) sulfide (sns) material: Synthesis, properties, and applications. Critical Reviews in Solid State and Materials Sciences, 40(6), 359-398. https://doi.org/10.1080/10408436.2015.1053601
  • Lee, S., Shin, S., Ham, G., Lee, J., Choi, H., Park, H., & Jeon, H. (2017). Characteristics of layered tin disulfide deposited by atomic layer deposition with h2s annealing. AIP Advances, 7(4), 045307. https://doi.org/10.1063/1.4982068
  • Naidu, R., Loorits, M., Karber, E., Volobujeva, O., Raudoja, J., Maticiuc, N., Bereznev, S., & Mellikov, E. (2017). Impact of vacuum and nitrogen annealing on hve sns photoabsorber films. Materials Science in Semiconductor Processing, 71, 252-257. https://doi.org/10.1016/j.mssp.2017.08.004
  • Nair, M. T. S., Nair, P. K., & Nair, P. K. (1991). Simplified chemical-deposition technique for good quality sns thin-films. Semiconductor Science and Technology, 6(2), 132-134. https://doi.org/10.1088/0268-1242/6/2/014
  • Noguchi, H., Setiyadi, A., Tanamura, H., Nagatomo, T., & Omoto, O. (1994). Characterization of vacuum-evaporated tin sulfide film for solar-cell materials. Solar energy materials and solar cells, 35(1-4), 325-331. https://doi.org/10.1016/0927-0248(94)90158-9
  • Norton, K. J., Alam, F., & Lewis, D. J. (2021). A review of the synthesis, properties, and applications of bulk and two-dimensional tin (ii) sulfide (sns). Applied Sciences-Basel, 11(5), 2062. https://doi.org/10.3390/app11052062
  • Nwofe, P. A., Miles, R. W., & Reddy, K. T. R. (2013). Effects of sulphur and air annealing on the properties of thermally evaporated sns layers for application in thin film solar cell devices. Journal of Renewable and Sustainable Energy, 5(1), 011204. https://doi.org/10.1063/1.4791784
  • Olgar, M. A., Ciri, A., Tomakin, M., & Zan, R. (2021). Impact of in/ex situ annealing and reaction temperature on structural, optical and electrical properties of sns thin films. Journal of Molecular Structure, 1241, 130631. https://doi.org/10.1016/j.molstruc.2021.130631
  • Ortiz, A., Alonso, J. C., Garcia, M., & Toriz, J. (1996). Tin sulphide films deposited by plasma-enhanced chemical vapour deposition. Semiconductor Science and Technology, 11(2), 243-247. https://doi.org/10.1088/0268-1242/11/2/017
  • Park, H. H., Heasley, R., Sun, L. Z., Steinmann, V., Jaramillo, R., Hartman, K., Chakraborty, R., Sinsermsuksakul, P., Chua, D., Buonassisi, T., & Gordon, R. G. (2015). Co-optimization of sns absorber and zn(o,s) buffer materials for improved solar cells. Progress in Photovoltaics, 23(7), 901-908. v10.1002/pip.2504
  • Patel, M., Mukhopadhyay, I., & Ray, A. (2013). Annealing influence over structural and optical properties of sprayed sns thin films. Optical Materials, 35(9), 1693-1699. https://doi.org/10.1016/j.optmat.2013.04.034
  • Patterson, A. (1939). The scherrer formula for x-ray particle size determination. Physical review, 56(10), 978. https://doi.org/10.1103/PhysRev.56.978
  • Paudel, N. R., Xiao, C., & Yan, Y. (2015). Study of close space sublimation (css) grown sns thin-films for solar cell applications. Í 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC). https://doi.org/10.1109/PVSC.2015.7356115
  • Rana, T. R., Kim, S., & Kim, J. (2018). Existence of multiple phases and defect states of sns absorber and its detrimental effect on efficiency of sns solar cell. Current Applied Physics, 18(6), 663-666. https://doi.org/10.1016/j.cap.2018.03.024
  • Reddy, K. T. R., Prathap, P., & Miles, R. W. (2010). Thin films of tin sulphide for application in photovoltaic solar cells. Photovoltaics: developments, applications and impact, 37-61. Reddy, K. T. R., Reddy, P. P., Miles, R. W., & Datta, P. K. (2001). Investigations on sns films deposited by spray pyrolysis. Optical Materials, 17(1-2), 295-298. https://doi.org/10.1016/S0925-3467(01)00052-0
  • Ristov, M., Sinadinovski, G., Grozdanov, I., & Mitreski, M. (1989). Chemical deposition of tin (ii) sulphide thin films. Thin Solid Films, 173(1), 53-58. https://doi.org/10.1016/0040-6090(89)90536-1
  • Sajeesh, T. H., Warrier, A. R., Kartha, C. S., & Vijayakumar, K. P. (2010). Optimization of parameters of chemical spray pyrolysis technique to get n and p-type layers of sns. Thin Solid Films, 518(15), 4370-4374. https://doi.org/10.1016/j.tsf.2010.01.040
  • Shockley, W., & Queisser, H. J. (1961). Detailed balance limit of efficiency of p‐n junction solar cells. Journal of Applied Physics, 32(3), 510-519. https://doi.org/10.1063/1.1736034
  • Sinsermsuksakul, P., Sun, L. Z., Lee, S. W., Park, H. H., Kim, S. B., Yang, C. X., & Gordon, R. G. (2014). Overcoming efficiency limitations of sns-based solar cells. Advanced Energy Materials, 4(15), 1400496. https://doi.org/10.1002/aenm.201400496
  • Smith, A., Meek, P., & Liang, W. (1977). Raman scattering studies of sns2 and snse2. Journal of Physics C: Solid State Physics, 10(8), 1321. https://doi.org/10.1088/0022-3719/10/8/035
  • Son, S. I., Shin, D., Son, Y. G., Son, C. S., Kim, D. R., Park, J. H., Kim, S., Hwang, D., & Song, P. (2020). Effect of working pressure on the properties of rf sputtered sns thin films and photovoltaic performance of sns-based solar cells. Journal of Alloys and Compounds, 831, 154626. https://doi.org/10.1016/j.jallcom.2020.154626
  • Sorgenfrei, T., Hofherr, F., Jauss, T., & Croll, A. (2013). Synthesis and single crystal growth of sns by the bridgman-stockbarger technique. Crystal Research and Technology, 48(4), 193-199. https://doi.org/10.1002/crat.201200484
  • Sousa, M. G., da Cunha, A. F., & Fernandes, P. A. (2014). Annealing of rf-magnetron sputtered sns2 precursors as a new route for single phase sns thin films. Journal of Alloys and Compounds, 592, 80-85. https://doi.org/10.1016/j.jallcom.2013.12.200
  • Tanuševski, A., & Poelman, D. (2003). Optical and photoconductive properties of sns thin films prepared by electron beam evaporation. Solar energy materials and solar cells, 80(3), 297-303. https://doi.org/10.1016/j.solmat.2003.06.002
  • Tao, C. S., Jiang, J., & Tao, M. (2013). Natural resource limitations to terawatt-scale solar photovoltaics. Í 2013 Twentieth International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD).
  • Tauc, J., Grigorovici, R., & Vancu, A. (1966). Optical properties and electronic structure of amorphous germanium. physica status solidi (b), 15(2), 627-637. https://doi.org/10.1002/pssb.19660150224
  • Vidal, J., Lany, S., d'Avezac, M., Zunger, A., Zakutayev, A., Francis, J., & Tate, J. (2012). Band-structure, optical properties, and defect physics of the photovoltaic semiconductor sns. Applied physics letters, 100(3), 032104. https://doi.org/10.1063/1.3675880
  • Wang, W., Chen, G., Cai, H., Chen, B., Yao, L., Yang, M., Chen, S., & Huang, Z. (2018). The effects of sns2 secondary phases on cu2znsns4 solar cells: A promising mechanical exfoliation method for its removal. Journal of Materials Chemistry A, 6(7), 2995-3004. https://doi.org/10.1039/C7TA08242H
  • Zainal, Z., Hussein, M. Z., & Ghazali, A. (1996). Cathodic electrodeposition of sns thin films from aqueous solution. Solar energy materials and solar cells, 40(4), 347-357. https://doi.org/10.1016/0927-0248(95)00157-3
  • Zakutayev, A. (2017). Brief review of emerging photovoltaic absorbers. Current Opinion in Green and Sustainable Chemistry, 4, 8-15. https://doi.org/10.1016/j.cogsc.2017.01.002
  • Zayed, J., & Philippe, S. (2009). Acute oral and inhalation toxicities in rats with cadmium telluride. Int J Toxicol, 28(4), 259-265. https://doi.org/10.1177/1091581809337630
  • Zhan, X. P., Shi, C. W., Shen, X. J., Yao, M., & Zhang, Y. R. (2012). Preparation of sns thin films by close-spaced sublimation at different source temperatures. Í Advanced Materials Research. https://doi.org/10.4028/www.scientific.net/AMR.590.148
  • Zhao, L. B., Di, Y. X., Yan, C., Liu, F. Y., Cheng, Z., Jiang, L. X., Hao, X. J., Lai, Y. Q., & Li, J. (2016). In situ growth of sns absorbing layer by reactive sputtering for thin film solar cells. RSC advances, 6(5), 4108-4115. https://doi.org/10.1039/c5ra24144h

Hızlı ısıl işlemle SnS ince filmlerinin üretimi: sülfürleme işleminde tavlama sıcaklığının etkisi

Yıl 2022, Cilt: 12 Sayı: 2, 404 - 413, 15.04.2022
https://doi.org/10.17714/gumusfenbil.1006581

Öz

Bu çalışmada, sülfürleme sıcaklığının SnS ince filmlerin özellikleri üzerine etkisi araştırıldı. SnS ince film örnekleri, RF saçtırma metodunda tek hedef SnS saçtırma kaynağı kullanılarak ile SnS filmlerinin biriktirilmesi ve devamında 225, 300 ve 375°C sıcaklıklarda Hızlı Isıl İşlem (RTP) sistemiyle tavlama/sülfürleme işlemi kullanılmasıyla iki aşamada üretildi. Filmlerin analizleri için XRD, Raman spektroskopisi, EDX, optik geçirgenlik ve Van der Pauw gibi çeşitli karakterizasyon teknikleri kullanıldı. EDX analizleri, tüm numunelerin neredeyse stokiyometrik (S/Sn~1) kimyasal kompozisyona sahip olduğunu gösterdi. Ancak sülfürleme sıcaklığı arttıkça numunelerdeki sülfür miktarının hafifçe arttığı görüldü. Filmlerin XRD spektrumları, tavlama sıcaklığından bağımsız olarak ortorombik SnS yapısının oluşumunu gösterdi. En yüksek sıcaklıkta (375°C) tavlanan SnS örneğinde ortorombik SnS fazının yanında SnS2 ikincil faz oluşumu gözlendi. Filmlerin Raman spektroskopi ölçümleri, ortorombik SnS yapısının oluşumunu doğruladı. Filmlerin bant aralığının, sülfürleme sıcaklığına bağlı olarak 1.42 ile 1.81 eV arasında değiştiği belirlendi. Sergilediği özellikler ile öne çıkan örnek olan 300°C’de sülfürlenen SnS ince filminin elektriksel karakterizasyonu, özdirenç ve yük taşıyıcı konsantrasyonunun sırasıyla 1.07x104 Ω.cm ve 1.70x1014 cm-3 olduğu belirlendi. Gerçekleştirilen tüm karakterizasyonlara dayanarak, 300°C'de sülfürlenen SnS ince filminin potansiyel güneş hücre uygulamaları için daha üstün yapısal ve optik özelliklere sahip olduğu sonucuna varıldı.

Kaynakça

  • Arepalli, V. K., & Kim, J. (2018). Effect of substrate temperature on the structural and optical properties of radio frequency sputtered tin sulfide thin films for solar cell application. Thin Solid Films, 666, 34-39. https://doi.org/10.1016/j.tsf.2018.09.009
  • Arepalli, V. K., Shin, Y., & Kim, J. (2018). Influence of working pressure on the structural, optical, and electrical properties of rf-sputtered sns thin films. Superlattices and Microstructures, 122, 253-261. https://doi.org/10.1016/j.spmi.2018.08.001
  • Arepalli, V. K., Shin, Y., & Kim, J. (2019). Photovoltaic behavior of the room temperature grown rf-sputtered sns thin films. Optical Materials, 88, 594-600. v10.1016/j.optmat.2018.12.016
  • Baby, B. H., & Mohan, D. B. (2018). Phase optimization study of orthorhombic structured sns nanorods from ctab assisted polyol synthesis for higher efficiency thin film solar cells. Solar Energy, 174, 373-385. https://doi.org/10.1016/j.solener.2018.09.019
  • Baby, B. H., & Mohan, D. B. (2019). The effect of in-situ and post deposition annealing towards the structural optimization studies of rf sputtered sns and sn2s3 thin films for solar cell application. Solar Energy, 189, 207-218. https://doi.org/10.1016/j.solener.2019.07.059
  • Banai, R. E., Horn, M. W., & Brownson, J. R. S. (2016). A review of tin (ii) monosulfide and its potential as a photovoltaic absorber. Solar energy materials and solar cells, 150, 112-129. https://doi.org/10.1016/j.solmat.2015.12.001
  • Candelise, C., Winskel, M., & Gross, R. (2012). Implications for cdte and cigs technologies production costs of indium and tellurium scarcity. Progress in Photovoltaics, 20(6), 816-831. https://doi.org/10.1002/pip.2216
  • Ceylan, A. (2017). Synthesis of sns thin films via high vacuum sulfidation of sputtered sn thin films. Materials Letters, 201, 194-197. https://doi.org/10.1016/j.matlet.2017.05.022
  • Chalapathi, U., Poornaprakash, B., Choi, W. J., & Park, S. H. (2020). Ammonia(aq)-enhanced growth of cubic sns thin films by chemical bath deposition for solar cell applications. Applied Physics a-Materials Science & Processing, 126(8), 1-9. https://doi.org/10.1007/s00339-020-03763-4
  • Chandrasekhar, H., Humphreys, R., Zwick, U., & Cardona, M. (1977). Infrared and raman spectra of the iv-vi compounds sns and snse. Physical Review B, 15(4), 2177. https://doi.org/10.1103/PhysRevB.15.2177 Chopra, K. (1969). Thin film phenomena mcgraw-hill. New York, 19692, 196.
  • Di Mare, S., Menossi, D., Salavei, A., Artegiani, E., Piccinelli, F., Kumar, A., Mariotto, G., & Romeo, A. (2017). Sns thin film solar cells: Perspectives and limitations. Coatings, 7(2), 34. https://doi.org/10.3390/coatings7020034
  • Fairbrother, A., Fourdrinier, L., Fontané, X., Izquierdo-Roca, V., Dimitrievska, M., Pérez-Rodríguez, A. ,& Saucedo, E. (2014). Rapid thermal processing of cu2znsnse4 thin films. Í 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC). https://doi.org/10.1109/PVSC.2014.6925390
  • Fu, H. Y. (2018). Environmentally friendly and earth-abundant colloidal chalcogenide nanocrystals for photovoltaic applications. Journal of Materials Chemistry C, 6(3), 414-445. https://doi.org/10.1039/c7tc04952h
  • Gedi, S., Reddy, V. R. M., Kang, J. Y., & Jeon, C. W. (2017). Impact of high temperature and short period annealing on sns films deposited by e-beam evaporation. Applied Surface Science, 402, 463-468. https://doi.org/10.1016/j.apsusc.2017.01.113
  • Ghazali, A., Zainal, Z., Hussein, M. Z., & Kassim, A. (1998). Cathodic electrodeposition of sns in the presence of edta in aqueous media. Solar energy materials and solar cells, 55(3), 237-249. https://doi.org/10.1016/S0927-0248(98)00106-8
  • Guang-Pu, W., Zhi-Lin, Z., Wei-Ming, Z., Xiang-Hong, G., Wei-Qun, C., Tanamura, H., Yamaguchi, M., Noguchi, H., Nagatomo, T., & Omoto, O. (1994). Investigation on sns film by rf sputtering for photovoltaic application. Í Proceedings of 1994 IEEE 1st World Conference on Photovoltaic Energy Conversion-WCPEC (A Joint Conference of PVSC, PVSEC and PSEC). https://doi.org/10.1109/WCPEC.1994.519977
  • Guo, F. R., Guo, H. F., Zhang, K. Z., Yuan, N. Y., & Ding, J. N. (2017). Variations in structural and optoelectronic features of thermally co-evaporated sns films with different sn contents. Thin Solid Films, 642, 285-289. https://doi.org/10.1016/j.tsf.2017.09.031
  • Gurnani, C., Hawken, S. L., Hector, A. L., Huang, R., Jura, M., Levason, W., Perkins, J., Reid, G., & Stenning, G. B. (2018). Tin(iv) chalcogenoether complexes as single source precursors for the chemical vapour deposition of sne2 and sne (e= s, se) thin films. Dalton Transactions, 47(8), 2628-2637. https://doi.org/10.1039/C7DT03848H
  • Hartman, K., Johnson, J. L., Bertoni, M. I., Recht, D., Aziz, M. J., Scarpulla, M. A., & Buonassisi, T. (2011). Sns thin-films by rf sputtering at room temperature. Thin Solid Films, 519(21), 7421-7424. https://doi.org/10.1016/j.tsf.2010.12.186
  • Hasan, B. A., & Shallal, I. H. (2014). Structural and optical properties of sns thin films. Journal of Nanotechnology & Advance Materials(2), 43-49. https://doi.org/10.18576/jnam Jain, P., & Arun, P. (2013). Influence of grain size on the band-gap of annealed sns thin films. Thin Solid Films, 548, 241-246. https://doi.org/10.1016/j.tsf.2013.09.089
  • Javed, A., Khan, N., Bashir, S., Ahmad, M., & Bashir, M. (2020). Thickness dependent structural, electrical and optical properties of cubic sns thin films. Materials Chemistry and Physics, 246, 122831. https://doi.org/10.1016/j.matchemphys.2020.122831
  • Johnson, J. B., Jones, H., Latham, B. S., Parker, J. D., Engelken, R. D., & Barber, C. (1999). Optimization of photoconductivity in vacuum-evaporated tin sulfide thin films. Semiconductor Science and Technology, 14(6), 501-507. https://doi.org/10.1088/0268-1242/14/6/303
  • Kevin, P., Lewis, D. J., Raftery, J., Malik, M. A., & O'Brien, P. (2015). Thin films of tin(ii) sulphide (sns) by aerosol-assisted chemical vapour deposition (aacvd) using tin(ii) dithiocarbamates as single-source precursors. Journal of Crystal Growth, 415, 93-99. https://doi.org/10.1016/j.jcrysgro.2014.07.019
  • Koteeswara Reddy, N., Devika, M., & Gopal, E. (2015). Review on tin (ii) sulfide (sns) material: Synthesis, properties, and applications. Critical Reviews in Solid State and Materials Sciences, 40(6), 359-398. https://doi.org/10.1080/10408436.2015.1053601
  • Lee, S., Shin, S., Ham, G., Lee, J., Choi, H., Park, H., & Jeon, H. (2017). Characteristics of layered tin disulfide deposited by atomic layer deposition with h2s annealing. AIP Advances, 7(4), 045307. https://doi.org/10.1063/1.4982068
  • Naidu, R., Loorits, M., Karber, E., Volobujeva, O., Raudoja, J., Maticiuc, N., Bereznev, S., & Mellikov, E. (2017). Impact of vacuum and nitrogen annealing on hve sns photoabsorber films. Materials Science in Semiconductor Processing, 71, 252-257. https://doi.org/10.1016/j.mssp.2017.08.004
  • Nair, M. T. S., Nair, P. K., & Nair, P. K. (1991). Simplified chemical-deposition technique for good quality sns thin-films. Semiconductor Science and Technology, 6(2), 132-134. https://doi.org/10.1088/0268-1242/6/2/014
  • Noguchi, H., Setiyadi, A., Tanamura, H., Nagatomo, T., & Omoto, O. (1994). Characterization of vacuum-evaporated tin sulfide film for solar-cell materials. Solar energy materials and solar cells, 35(1-4), 325-331. https://doi.org/10.1016/0927-0248(94)90158-9
  • Norton, K. J., Alam, F., & Lewis, D. J. (2021). A review of the synthesis, properties, and applications of bulk and two-dimensional tin (ii) sulfide (sns). Applied Sciences-Basel, 11(5), 2062. https://doi.org/10.3390/app11052062
  • Nwofe, P. A., Miles, R. W., & Reddy, K. T. R. (2013). Effects of sulphur and air annealing on the properties of thermally evaporated sns layers for application in thin film solar cell devices. Journal of Renewable and Sustainable Energy, 5(1), 011204. https://doi.org/10.1063/1.4791784
  • Olgar, M. A., Ciri, A., Tomakin, M., & Zan, R. (2021). Impact of in/ex situ annealing and reaction temperature on structural, optical and electrical properties of sns thin films. Journal of Molecular Structure, 1241, 130631. https://doi.org/10.1016/j.molstruc.2021.130631
  • Ortiz, A., Alonso, J. C., Garcia, M., & Toriz, J. (1996). Tin sulphide films deposited by plasma-enhanced chemical vapour deposition. Semiconductor Science and Technology, 11(2), 243-247. https://doi.org/10.1088/0268-1242/11/2/017
  • Park, H. H., Heasley, R., Sun, L. Z., Steinmann, V., Jaramillo, R., Hartman, K., Chakraborty, R., Sinsermsuksakul, P., Chua, D., Buonassisi, T., & Gordon, R. G. (2015). Co-optimization of sns absorber and zn(o,s) buffer materials for improved solar cells. Progress in Photovoltaics, 23(7), 901-908. v10.1002/pip.2504
  • Patel, M., Mukhopadhyay, I., & Ray, A. (2013). Annealing influence over structural and optical properties of sprayed sns thin films. Optical Materials, 35(9), 1693-1699. https://doi.org/10.1016/j.optmat.2013.04.034
  • Patterson, A. (1939). The scherrer formula for x-ray particle size determination. Physical review, 56(10), 978. https://doi.org/10.1103/PhysRev.56.978
  • Paudel, N. R., Xiao, C., & Yan, Y. (2015). Study of close space sublimation (css) grown sns thin-films for solar cell applications. Í 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC). https://doi.org/10.1109/PVSC.2015.7356115
  • Rana, T. R., Kim, S., & Kim, J. (2018). Existence of multiple phases and defect states of sns absorber and its detrimental effect on efficiency of sns solar cell. Current Applied Physics, 18(6), 663-666. https://doi.org/10.1016/j.cap.2018.03.024
  • Reddy, K. T. R., Prathap, P., & Miles, R. W. (2010). Thin films of tin sulphide for application in photovoltaic solar cells. Photovoltaics: developments, applications and impact, 37-61. Reddy, K. T. R., Reddy, P. P., Miles, R. W., & Datta, P. K. (2001). Investigations on sns films deposited by spray pyrolysis. Optical Materials, 17(1-2), 295-298. https://doi.org/10.1016/S0925-3467(01)00052-0
  • Ristov, M., Sinadinovski, G., Grozdanov, I., & Mitreski, M. (1989). Chemical deposition of tin (ii) sulphide thin films. Thin Solid Films, 173(1), 53-58. https://doi.org/10.1016/0040-6090(89)90536-1
  • Sajeesh, T. H., Warrier, A. R., Kartha, C. S., & Vijayakumar, K. P. (2010). Optimization of parameters of chemical spray pyrolysis technique to get n and p-type layers of sns. Thin Solid Films, 518(15), 4370-4374. https://doi.org/10.1016/j.tsf.2010.01.040
  • Shockley, W., & Queisser, H. J. (1961). Detailed balance limit of efficiency of p‐n junction solar cells. Journal of Applied Physics, 32(3), 510-519. https://doi.org/10.1063/1.1736034
  • Sinsermsuksakul, P., Sun, L. Z., Lee, S. W., Park, H. H., Kim, S. B., Yang, C. X., & Gordon, R. G. (2014). Overcoming efficiency limitations of sns-based solar cells. Advanced Energy Materials, 4(15), 1400496. https://doi.org/10.1002/aenm.201400496
  • Smith, A., Meek, P., & Liang, W. (1977). Raman scattering studies of sns2 and snse2. Journal of Physics C: Solid State Physics, 10(8), 1321. https://doi.org/10.1088/0022-3719/10/8/035
  • Son, S. I., Shin, D., Son, Y. G., Son, C. S., Kim, D. R., Park, J. H., Kim, S., Hwang, D., & Song, P. (2020). Effect of working pressure on the properties of rf sputtered sns thin films and photovoltaic performance of sns-based solar cells. Journal of Alloys and Compounds, 831, 154626. https://doi.org/10.1016/j.jallcom.2020.154626
  • Sorgenfrei, T., Hofherr, F., Jauss, T., & Croll, A. (2013). Synthesis and single crystal growth of sns by the bridgman-stockbarger technique. Crystal Research and Technology, 48(4), 193-199. https://doi.org/10.1002/crat.201200484
  • Sousa, M. G., da Cunha, A. F., & Fernandes, P. A. (2014). Annealing of rf-magnetron sputtered sns2 precursors as a new route for single phase sns thin films. Journal of Alloys and Compounds, 592, 80-85. https://doi.org/10.1016/j.jallcom.2013.12.200
  • Tanuševski, A., & Poelman, D. (2003). Optical and photoconductive properties of sns thin films prepared by electron beam evaporation. Solar energy materials and solar cells, 80(3), 297-303. https://doi.org/10.1016/j.solmat.2003.06.002
  • Tao, C. S., Jiang, J., & Tao, M. (2013). Natural resource limitations to terawatt-scale solar photovoltaics. Í 2013 Twentieth International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD).
  • Tauc, J., Grigorovici, R., & Vancu, A. (1966). Optical properties and electronic structure of amorphous germanium. physica status solidi (b), 15(2), 627-637. https://doi.org/10.1002/pssb.19660150224
  • Vidal, J., Lany, S., d'Avezac, M., Zunger, A., Zakutayev, A., Francis, J., & Tate, J. (2012). Band-structure, optical properties, and defect physics of the photovoltaic semiconductor sns. Applied physics letters, 100(3), 032104. https://doi.org/10.1063/1.3675880
  • Wang, W., Chen, G., Cai, H., Chen, B., Yao, L., Yang, M., Chen, S., & Huang, Z. (2018). The effects of sns2 secondary phases on cu2znsns4 solar cells: A promising mechanical exfoliation method for its removal. Journal of Materials Chemistry A, 6(7), 2995-3004. https://doi.org/10.1039/C7TA08242H
  • Zainal, Z., Hussein, M. Z., & Ghazali, A. (1996). Cathodic electrodeposition of sns thin films from aqueous solution. Solar energy materials and solar cells, 40(4), 347-357. https://doi.org/10.1016/0927-0248(95)00157-3
  • Zakutayev, A. (2017). Brief review of emerging photovoltaic absorbers. Current Opinion in Green and Sustainable Chemistry, 4, 8-15. https://doi.org/10.1016/j.cogsc.2017.01.002
  • Zayed, J., & Philippe, S. (2009). Acute oral and inhalation toxicities in rats with cadmium telluride. Int J Toxicol, 28(4), 259-265. https://doi.org/10.1177/1091581809337630
  • Zhan, X. P., Shi, C. W., Shen, X. J., Yao, M., & Zhang, Y. R. (2012). Preparation of sns thin films by close-spaced sublimation at different source temperatures. Í Advanced Materials Research. https://doi.org/10.4028/www.scientific.net/AMR.590.148
  • Zhao, L. B., Di, Y. X., Yan, C., Liu, F. Y., Cheng, Z., Jiang, L. X., Hao, X. J., Lai, Y. Q., & Li, J. (2016). In situ growth of sns absorbing layer by reactive sputtering for thin film solar cells. RSC advances, 6(5), 4108-4115. https://doi.org/10.1039/c5ra24144h
Toplam 56 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Makaleler
Yazarlar

Ali Çiriş 0000-0003-4266-2080

Mehmet Ali Olğar 0000-0002-6359-8316

Yayımlanma Tarihi 15 Nisan 2022
Gönderilme Tarihi 8 Ekim 2021
Kabul Tarihi 16 Ocak 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 12 Sayı: 2

Kaynak Göster

APA Çiriş, A., & Olğar, M. A. (2022). Fabrication of SnS thin film by rapid thermal processing: effect of annealing temperature in sulfurization process. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 12(2), 404-413. https://doi.org/10.17714/gumusfenbil.1006581