Araştırma Makalesi
BibTex RIS Kaynak Göster

Antibiotic resistance of Escherichia coli isolates obtained from burn patients

Yıl 2023, Cilt: 13 Sayı: 4, 780 - 789, 15.10.2023
https://doi.org/10.17714/gumusfenbil.1271503

Öz

Bacterial resistance to widely used antibiotics is an emerging global health issue and causes a huge problem in burn patients. Despite important developments in antimicrobial treatments, the risk of infection-associated mortality rate in burn patients is comparatively high. Escherichia coli is one of the most common causative agents of burn wound infections. Therefore, this study aimed to identify and characterize E. coli isolates from burn wounds using the VITEK 2 system and to test their antibiotic resistance to the most commonly used antibiotics with the disc diffusion method. In our study, of 147 clinical samples obtained from burn patients, 25 (%17) were detected as positive for E. coli. All these isolates were found to be resistant to cephalothin, cephradine, piperacillin, and rifampin antibiotics. The resistance to amoxicillin+clavulanic acid and ampicillin was 96% (± 8%), which was followed by amikacin and cefotaxime with a 92% (± 11%) resistance rate. On the other hand, imipenem (96% ± 8%), tetracycline (88% ± 13%), and gentamicin (76% ± 17%) were the antibiotics that showed the highest sensitivity against E. coli isolates. The multidrug-resistant bacteria are one of the main issues for clinical applications, so their characterization is vital in developing a proper treatment strategy. This study concluded that E. coli exists in burn wounds and might cause wound infection due to its resistance to different antibiotics.

Kaynakça

  • Atlas, R. M., Brown, A. E., & Parks, L. C. (1995). Laboratory manual of experimental microbiology (1st ed.). Mosby, St. Louis, USA.
  • Azzopardi, E. A., Azzopardi, E., Camilleri, L., Villapalos, J., Boyce, D. E., Dziewulski, P., Dickson, W. A., & Whitaker, I. S. (2014). Gram negative wound infection in hospitalised adult burn patients-systematic review and metanalysis. PloS One, 9, e95042. https://doi.org/10.1371/journal.pone.0095042
  • Berglund, F., Böhm, M. E., Martinsson, A., Ebmeyer, S., Österlund, T., Johnning, A., Larsson, D. G. J., & Kristiansson, E. (2020). Comprehensive screening of genomic and metagenomic data reveals a large diversity of tetracycline resistance genes. Microbial Genomics, 6(11). https://doi.org/10.1099/mgen.0.000455
  • Buelow, E., Ploy, M. C., & Dagot, C. (2021). Role of pollution on the selection of antibiotic resistance and bacterial pathogens in the environment. Current Opinion in Microbiology, 64, 117-124. https://doi.org/10.1016/j.mib.2021.10.005
  • Bunduki, G. K., Heinz, E., Phiri, V. S., Noah, P., Feasey, N., & Musaya, J. (2021). Virulence factors and antimicrobial resistance of uropathogenic Escherichia coli (UPEC) isolated from urinary tract infections: A systematic review and meta-analysis. BMC Infectious Diseases, 21. https://doi.org/10.1186/s12879-021-06435-7
  • Christaki, E., Marcou, M., & Tofarides, A. (2020). Antimicrobial resistance in bacteria: Mechanisms, evolution, and persistence. Journal of Molecular Evolution, 88, 26-40. https://doi.org/10.1007/s00239-019-09914-3
  • Espinar, M. J., Rocha, R., Ribeiro, M., Rodrigues, A. G., & Pina-Vaz, C. (2011). Extended-spectrum β-lactamases of Escherichia coli and Klebsiella pneumoniae screened by the VITEK 2 system. Journal of Medical Microbiology, 60, 756-760. https://doi.org/10.1099/jmm.0.024075-0
  • Feklistov, A., Mekler, V., Jiang, Q., Westblade, L. F., Irschik, H., Jansen, R., Mustaev, A., Darst, S. A., & Ebright, R. H. (2008). Rifamycins do not function by allosteric modulation of binding of Mg2+ to the RNA polymerase active center. Proceedings of the National Academy of Sciences, 105, 14820-14825. https://doi.org/10.1073/pnas.0802822105
  • Goldstein, B. P. (2014). Resistance to rifampicin: The Journal of Antibiotics, 67, 625-630. https://doi.org/10.1038/ja.2014.107
  • Grobbelaar, M., Louw, G. E., Sampson, S. L., Van Helden, P. D., Donald, P. R., & Warren, R. M. (2019). Evolution of rifampicin treatment for tuberculosis. Infection, Genetics and Evolution, 74, 103937. https://doi.org/10.1016/j.meegid.2019.103937
  • Hamouche, L., Poljak, L., & Carpousis, A. J. (2021). Ribosomal RNA degradation induced by the bacterial RNA polymerase inhibitor rifampicin. RNA, 27, 946-958. https://doi.org/10.1261/rna.078776.121
  • Hansen, K. H., Andreasen, M. R., Pedersen, M. S., Westh, H., Jelsbak, L., & Schønning, K. (2019). Resistance to piperacillin/tazobactam in Escherichia coli resulting from extensive is 26-associated gene amplification of blaTEM-1. Journal of Antimicrobial Chemotherapy, 74, 3179-3183. https://doi.org/10.1093/jac/dkz349
  • Hazra, A. (2017). Using the confidence interval confidently. Journal of Thoracic Disease, 9(10), 4125–4130. https://doi.org/10.21037/jtd.2017.09.14
  • Holt, J. G., Krieg, N. R., Sneath, P. H. A., Staley, J. T., & Williams, S. T. (Eds.). (1994). Bergey’s manual of determinative bacteriology (9th ed.). Williams and Wilkins, Baltimore.
  • Hudzicki, J. (2009). Kirby-Bauer disk diffusion susceptibility test protocol. American Society for Microbiology, 15, 55-63.
  • Jung, H.-R., Kim, K., & Lee, Y. J. (2021). Comparative analysis of genetic characterization of β-lactam-resistant Escherichia coli from bulk tank milk in Korea. Irish Veterinary Journal, 74, 1-10. https://doi.org/10.1186/s13620-021-00203-4
  • Kakoullis, L., Papachristodoulou, E., Chra, P., & Panos, G. (2021). Mechanisms of antibiotic resistance in important gram-positive and gram-negative pathogens and novel antibiotic solutions. Antibiotics, 10(4), 415. https://doi.org/10.3390/antibiotics10040415
  • Karami, N., Nowrouzian, F., Adlerberth, I., & Wold, A. E. (2006). Tetracycline resistance in Escherichia coli and persistence in the infantile colonic microbiota. Antimicrobial Agents and Chemotherapy, 50, 156-161. https://doi.org/10.1128/AAC.50.1.156-161.2006
  • Lachiewicz, A. M., Hauck, C. G., Weber, D. J., Cairns, B. A., & Van Duin, D. (2017). Bacterial infections after burn injuries: Impact of multidrug resistance. Clinical Infectious Diseases, 65, 2130-2136. https://doi.org/10.1093/cid/cix682
  • Lee, J. H. (2019). Perspectives towards antibiotic resistance: From molecules to population. Journal of Microbiology, 57(3), 181-184. https://doi.org/10.1007/s12275-019-0718-8
  • Levy, S. B., & Marshall, B. (2004). Antibacterial resistance worldwide: Causes, challenges and responses. Nature Medicine, 10, 122-129. https://doi.org/10.1038/nm1145
  • MacFaddin, J. F. (2000). Biochemical tests for identification of medical bacteria (3rd Ed.). Lippincott Williams & Wilkins, Philadelphia.
  • Mbanga, J., Abia, A. L. K., Amoako, D. G., & Essack, S. Y. (2021). Longitudinal surveillance of antibiotic resistance in Escherichia coli and Enterococcus spp. from a wastewater treatment plant and its associated waters in Kwazulu-Natal, South Africa. Microbial Drug Resistance, 27, 904-918. https://doi.org/10.1089/mdr.2020.0380
  • Moins-Teisserenc, H., Cordeiro, D. J., Audigier, V., Ressaire, Q., Benyamina, M., Lambert, J., Maki, G., Homyrda, L., Toubert, A., & Legrand, M. (2021). Severe altered immune status after burn injury is associated with bacterial infection and septic shock. Frontiers in Immunology, 12, 586195. https://doi.org/10.3389/fimmu.2021.586195
  • Mortazavi-Tabatabaei, S. A. R., Ghaderkhani, J., Nazari, A., Sayehmiri, K., Sayehmiri, F., & Pakzad, I. (2019). Pattern of antibacterial resistance in urinary tract infections: A systematic review and meta-analysis. International Journal of Preventive Medicine, 10, 169. https://doi.org/10.4103/ijpvm.IJPVM_419_17
  • Mulder, P. P. G., Vlig, M., Boekema, B. K. H. L., Stoop, M. M., Pijpe, A., Van Zuijlen, P. P. M., De Jong, E., Van Cranenbroek, B., Joosten, I., & Koenen, H. J. P. M. (2021). Persistent systemic inflammation in patients with severe burn injury is accompanied by influx of immature neutrophils and shifts in T cell subsets and cytokine profiles. Frontiers in Immunology, 11, 621222. https://doi.org/10.3389/fimmu.2020.621222
  • Nascimento, P. A. D., Kogawa, A. C., & Salgado, H. R. N. (2021). Cephalothin: Review of characteristics, properties, and status of analytical methods. Journal of AOAC International, 104(6), 1593-1608. https://doi.org/10.1093/jaoacint/qsaa163
  • Nessa, K., Ahmed, D., Islam, J., Kabir, F. L., & Hossain, M. A. (2007). Usefulness of a multiplex PCR for detection of diarrheagenic Escherichia coli in a diagnostic microbiology laboratory setting. Bangladesh Journal of Medical Microbiology, 1, 38–42. https://doi.org/10.3329/bjmm.v1i2.21506
  • Ong, A., Mahobia, N., Browning, D., Schembri, M., & Somani, B. K. (2021). Trends in antibiotic resistance for over 700,000 Escherichia coli positive urinary tract infections over six years (2014–2019) from a university teaching hospital. Central European Journal of Urology, 74(2), 249-254. https://doi.org/10.5173/ceju.2021.0053
  • Poirel, L., Madec, J.-Y., Lupo, A., Schink, A.-K., Kieffer, N., Nordmann, P., & Schwarz, S. (2018). Antimicrobial resistance in Escherichia coli. Microbiology Spectrum, 6(4), 6-4. https://doi.org/10.1128/microbiolspec.ARBA-0026-2017
  • Raeispour, M., & Ranjbar, R. (2018). Antibiotic resistance, virulence factors and genotyping of uropathogenic Escherichia coli strains. Antimicrobial Resistance & Infection Control, 7(1), 1-9. https://doi.org/10.1186/s13756-018-0411-4
  • Schechter, L. M., Creely, D. P., Garner, C. D., Shortridge, D., Nguyen, H., Chen, L., Hanson, B. M., Sodergren, E., Weinstock, G. M., & Dunne Jr, W. M. (2018). Extensive gene amplification as a mechanism for piperacillin-tazobactam resistance in Escherichia coli. MBio, 9(2), e00583-00518. https://doi.org/10.1128/mBio.00583-18
  • Shill, M. C., Huda, N. H., Moain, F. B., & Karmakar, U. K. (2010). Prevalence of uropathogens in diabetic patients and their corresponding resistance pattern: Results of a survey conducted at diagnostic centers in Dhaka, Bangladesh. Oman Medical Journal, 25(4), 282-285. https://doi.org/10.5001/omj.2010.82
  • Taha, Z. M., & Yassin, N. A. (2019). Prevalence of diarrheagenic Escherichia coli in animal products in Duhok province, Iraq. Iranian Journal of Veterinary Research, 20(4), 255-262.
  • Tantisuwanno, C., Dang, F., Bender, K., Spencer, J. D., Jennings, M. E., Barton, H. A., & Joy, A. (2021). Synergism between rifampicin and cationic polyurethanes overcomes intrinsic resistance of Escherichia coli. Biomacromolecules, 22(7), 2910-2920. https://doi.org/10.1021/acs.biomac.1c00306
  • Verma, T., Annappa, H., Singh, S., Umapathy, S., & Nandi, D. (2021). Profiling antibiotic resistance in Escherichia coli strains displaying differential antibiotic susceptibilities using Raman spectroscopy. Journal of Biophotonics, 14(1), e202000231. https://doi.org/10.1002/jbio.202000231
  • Vinaik, R., Barayan, D., Shahrokhi, S., & Jeschke, M. G. (2019). Management and prevention of drug resistant infections in burn patients. Expert review of Anti-Infective Therapy, 17(8), 607-619. https://doi.org/10.1080/14787210.2019.1648208

Yanık hastalarından elde edilen Escherichia coli izolatlarının antibiyotik direnci

Yıl 2023, Cilt: 13 Sayı: 4, 780 - 789, 15.10.2023
https://doi.org/10.17714/gumusfenbil.1271503

Öz

Yaygın olarak kullanılan antibiyotiklere karşı bakteriyel direnç, gelişmekte olan küresel bir sağlık sorunudur ve yanık hastalarında büyük bir probleme neden olmaktadır. Antimikrobiyal tedavilerdeki önemli gelişmelere rağmen, yanık hastalarında enfeksiyona bağlı ölüm oranı riski nispeten yüksektir. Escherichia coli, yanık yarası enfeksiyonlarının en yaygın etkenlerinden biridir. Bu nedenle bu çalışmada yanık yaralarından E. coli izolatlarının VITEK 2 sistemi kullanılarak tanımlanması, karakterize edilmesi ve en sık kullanılan antibiyotiklere karşı antibiyotik dirençlerinin disk difüzyon yöntemi ile test edilmesi amaçlanmıştır. Çalışmamızda yanık hastalarından alınan 147 klinik örneğin 25'inde (%17) E. coli bakterisi saptandı. Tüm bu izolatların sefalotin, sefradin, piperasilin ve rifampin antibiyotiklere dirençli olduğu bulundu. Amoksisilin+klavulanik asit ve ampisiline direnç %96 (± %8), bunu %92 (± %11) direnç oranıyla amikasin ve sefotaksim izledi. Öte yandan E. coli izolatlarına karşı en yüksek duyarlılığı gösteren antibiyotikler ise imipenem (%96 ± %8), tetrasiklin (%88 ± %13) ve gentamisin (%76 ± %17) olmuştur. Çoklu ilaca dirençli bakteriler, klinik uygulamalar için ana konulardan biridir, bu nedenle bunların karakterizasyonu, uygun bir tedavi stratejisi geliştirmede hayati önem taşır. Bu çalışma, E. coli'nin yanık yaralarında var olduğunu ve farklı antibiyotiklere direnci nedeniyle yara enfeksiyonuna neden olabileceği sonucuna varmıştır.

Kaynakça

  • Atlas, R. M., Brown, A. E., & Parks, L. C. (1995). Laboratory manual of experimental microbiology (1st ed.). Mosby, St. Louis, USA.
  • Azzopardi, E. A., Azzopardi, E., Camilleri, L., Villapalos, J., Boyce, D. E., Dziewulski, P., Dickson, W. A., & Whitaker, I. S. (2014). Gram negative wound infection in hospitalised adult burn patients-systematic review and metanalysis. PloS One, 9, e95042. https://doi.org/10.1371/journal.pone.0095042
  • Berglund, F., Böhm, M. E., Martinsson, A., Ebmeyer, S., Österlund, T., Johnning, A., Larsson, D. G. J., & Kristiansson, E. (2020). Comprehensive screening of genomic and metagenomic data reveals a large diversity of tetracycline resistance genes. Microbial Genomics, 6(11). https://doi.org/10.1099/mgen.0.000455
  • Buelow, E., Ploy, M. C., & Dagot, C. (2021). Role of pollution on the selection of antibiotic resistance and bacterial pathogens in the environment. Current Opinion in Microbiology, 64, 117-124. https://doi.org/10.1016/j.mib.2021.10.005
  • Bunduki, G. K., Heinz, E., Phiri, V. S., Noah, P., Feasey, N., & Musaya, J. (2021). Virulence factors and antimicrobial resistance of uropathogenic Escherichia coli (UPEC) isolated from urinary tract infections: A systematic review and meta-analysis. BMC Infectious Diseases, 21. https://doi.org/10.1186/s12879-021-06435-7
  • Christaki, E., Marcou, M., & Tofarides, A. (2020). Antimicrobial resistance in bacteria: Mechanisms, evolution, and persistence. Journal of Molecular Evolution, 88, 26-40. https://doi.org/10.1007/s00239-019-09914-3
  • Espinar, M. J., Rocha, R., Ribeiro, M., Rodrigues, A. G., & Pina-Vaz, C. (2011). Extended-spectrum β-lactamases of Escherichia coli and Klebsiella pneumoniae screened by the VITEK 2 system. Journal of Medical Microbiology, 60, 756-760. https://doi.org/10.1099/jmm.0.024075-0
  • Feklistov, A., Mekler, V., Jiang, Q., Westblade, L. F., Irschik, H., Jansen, R., Mustaev, A., Darst, S. A., & Ebright, R. H. (2008). Rifamycins do not function by allosteric modulation of binding of Mg2+ to the RNA polymerase active center. Proceedings of the National Academy of Sciences, 105, 14820-14825. https://doi.org/10.1073/pnas.0802822105
  • Goldstein, B. P. (2014). Resistance to rifampicin: The Journal of Antibiotics, 67, 625-630. https://doi.org/10.1038/ja.2014.107
  • Grobbelaar, M., Louw, G. E., Sampson, S. L., Van Helden, P. D., Donald, P. R., & Warren, R. M. (2019). Evolution of rifampicin treatment for tuberculosis. Infection, Genetics and Evolution, 74, 103937. https://doi.org/10.1016/j.meegid.2019.103937
  • Hamouche, L., Poljak, L., & Carpousis, A. J. (2021). Ribosomal RNA degradation induced by the bacterial RNA polymerase inhibitor rifampicin. RNA, 27, 946-958. https://doi.org/10.1261/rna.078776.121
  • Hansen, K. H., Andreasen, M. R., Pedersen, M. S., Westh, H., Jelsbak, L., & Schønning, K. (2019). Resistance to piperacillin/tazobactam in Escherichia coli resulting from extensive is 26-associated gene amplification of blaTEM-1. Journal of Antimicrobial Chemotherapy, 74, 3179-3183. https://doi.org/10.1093/jac/dkz349
  • Hazra, A. (2017). Using the confidence interval confidently. Journal of Thoracic Disease, 9(10), 4125–4130. https://doi.org/10.21037/jtd.2017.09.14
  • Holt, J. G., Krieg, N. R., Sneath, P. H. A., Staley, J. T., & Williams, S. T. (Eds.). (1994). Bergey’s manual of determinative bacteriology (9th ed.). Williams and Wilkins, Baltimore.
  • Hudzicki, J. (2009). Kirby-Bauer disk diffusion susceptibility test protocol. American Society for Microbiology, 15, 55-63.
  • Jung, H.-R., Kim, K., & Lee, Y. J. (2021). Comparative analysis of genetic characterization of β-lactam-resistant Escherichia coli from bulk tank milk in Korea. Irish Veterinary Journal, 74, 1-10. https://doi.org/10.1186/s13620-021-00203-4
  • Kakoullis, L., Papachristodoulou, E., Chra, P., & Panos, G. (2021). Mechanisms of antibiotic resistance in important gram-positive and gram-negative pathogens and novel antibiotic solutions. Antibiotics, 10(4), 415. https://doi.org/10.3390/antibiotics10040415
  • Karami, N., Nowrouzian, F., Adlerberth, I., & Wold, A. E. (2006). Tetracycline resistance in Escherichia coli and persistence in the infantile colonic microbiota. Antimicrobial Agents and Chemotherapy, 50, 156-161. https://doi.org/10.1128/AAC.50.1.156-161.2006
  • Lachiewicz, A. M., Hauck, C. G., Weber, D. J., Cairns, B. A., & Van Duin, D. (2017). Bacterial infections after burn injuries: Impact of multidrug resistance. Clinical Infectious Diseases, 65, 2130-2136. https://doi.org/10.1093/cid/cix682
  • Lee, J. H. (2019). Perspectives towards antibiotic resistance: From molecules to population. Journal of Microbiology, 57(3), 181-184. https://doi.org/10.1007/s12275-019-0718-8
  • Levy, S. B., & Marshall, B. (2004). Antibacterial resistance worldwide: Causes, challenges and responses. Nature Medicine, 10, 122-129. https://doi.org/10.1038/nm1145
  • MacFaddin, J. F. (2000). Biochemical tests for identification of medical bacteria (3rd Ed.). Lippincott Williams & Wilkins, Philadelphia.
  • Mbanga, J., Abia, A. L. K., Amoako, D. G., & Essack, S. Y. (2021). Longitudinal surveillance of antibiotic resistance in Escherichia coli and Enterococcus spp. from a wastewater treatment plant and its associated waters in Kwazulu-Natal, South Africa. Microbial Drug Resistance, 27, 904-918. https://doi.org/10.1089/mdr.2020.0380
  • Moins-Teisserenc, H., Cordeiro, D. J., Audigier, V., Ressaire, Q., Benyamina, M., Lambert, J., Maki, G., Homyrda, L., Toubert, A., & Legrand, M. (2021). Severe altered immune status after burn injury is associated with bacterial infection and septic shock. Frontiers in Immunology, 12, 586195. https://doi.org/10.3389/fimmu.2021.586195
  • Mortazavi-Tabatabaei, S. A. R., Ghaderkhani, J., Nazari, A., Sayehmiri, K., Sayehmiri, F., & Pakzad, I. (2019). Pattern of antibacterial resistance in urinary tract infections: A systematic review and meta-analysis. International Journal of Preventive Medicine, 10, 169. https://doi.org/10.4103/ijpvm.IJPVM_419_17
  • Mulder, P. P. G., Vlig, M., Boekema, B. K. H. L., Stoop, M. M., Pijpe, A., Van Zuijlen, P. P. M., De Jong, E., Van Cranenbroek, B., Joosten, I., & Koenen, H. J. P. M. (2021). Persistent systemic inflammation in patients with severe burn injury is accompanied by influx of immature neutrophils and shifts in T cell subsets and cytokine profiles. Frontiers in Immunology, 11, 621222. https://doi.org/10.3389/fimmu.2020.621222
  • Nascimento, P. A. D., Kogawa, A. C., & Salgado, H. R. N. (2021). Cephalothin: Review of characteristics, properties, and status of analytical methods. Journal of AOAC International, 104(6), 1593-1608. https://doi.org/10.1093/jaoacint/qsaa163
  • Nessa, K., Ahmed, D., Islam, J., Kabir, F. L., & Hossain, M. A. (2007). Usefulness of a multiplex PCR for detection of diarrheagenic Escherichia coli in a diagnostic microbiology laboratory setting. Bangladesh Journal of Medical Microbiology, 1, 38–42. https://doi.org/10.3329/bjmm.v1i2.21506
  • Ong, A., Mahobia, N., Browning, D., Schembri, M., & Somani, B. K. (2021). Trends in antibiotic resistance for over 700,000 Escherichia coli positive urinary tract infections over six years (2014–2019) from a university teaching hospital. Central European Journal of Urology, 74(2), 249-254. https://doi.org/10.5173/ceju.2021.0053
  • Poirel, L., Madec, J.-Y., Lupo, A., Schink, A.-K., Kieffer, N., Nordmann, P., & Schwarz, S. (2018). Antimicrobial resistance in Escherichia coli. Microbiology Spectrum, 6(4), 6-4. https://doi.org/10.1128/microbiolspec.ARBA-0026-2017
  • Raeispour, M., & Ranjbar, R. (2018). Antibiotic resistance, virulence factors and genotyping of uropathogenic Escherichia coli strains. Antimicrobial Resistance & Infection Control, 7(1), 1-9. https://doi.org/10.1186/s13756-018-0411-4
  • Schechter, L. M., Creely, D. P., Garner, C. D., Shortridge, D., Nguyen, H., Chen, L., Hanson, B. M., Sodergren, E., Weinstock, G. M., & Dunne Jr, W. M. (2018). Extensive gene amplification as a mechanism for piperacillin-tazobactam resistance in Escherichia coli. MBio, 9(2), e00583-00518. https://doi.org/10.1128/mBio.00583-18
  • Shill, M. C., Huda, N. H., Moain, F. B., & Karmakar, U. K. (2010). Prevalence of uropathogens in diabetic patients and their corresponding resistance pattern: Results of a survey conducted at diagnostic centers in Dhaka, Bangladesh. Oman Medical Journal, 25(4), 282-285. https://doi.org/10.5001/omj.2010.82
  • Taha, Z. M., & Yassin, N. A. (2019). Prevalence of diarrheagenic Escherichia coli in animal products in Duhok province, Iraq. Iranian Journal of Veterinary Research, 20(4), 255-262.
  • Tantisuwanno, C., Dang, F., Bender, K., Spencer, J. D., Jennings, M. E., Barton, H. A., & Joy, A. (2021). Synergism between rifampicin and cationic polyurethanes overcomes intrinsic resistance of Escherichia coli. Biomacromolecules, 22(7), 2910-2920. https://doi.org/10.1021/acs.biomac.1c00306
  • Verma, T., Annappa, H., Singh, S., Umapathy, S., & Nandi, D. (2021). Profiling antibiotic resistance in Escherichia coli strains displaying differential antibiotic susceptibilities using Raman spectroscopy. Journal of Biophotonics, 14(1), e202000231. https://doi.org/10.1002/jbio.202000231
  • Vinaik, R., Barayan, D., Shahrokhi, S., & Jeschke, M. G. (2019). Management and prevention of drug resistant infections in burn patients. Expert review of Anti-Infective Therapy, 17(8), 607-619. https://doi.org/10.1080/14787210.2019.1648208
Toplam 37 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mikrobiyoloji (Diğer)
Bölüm Makaleler
Yazarlar

Iman Alsarhan 0000-0003-0389-863X

Sedat Çam 0000-0001-9030-6713

Yayımlanma Tarihi 15 Ekim 2023
Gönderilme Tarihi 27 Mart 2023
Kabul Tarihi 18 Temmuz 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 13 Sayı: 4

Kaynak Göster

APA Alsarhan, I., & Çam, S. (2023). Antibiotic resistance of Escherichia coli isolates obtained from burn patients. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 13(4), 780-789. https://doi.org/10.17714/gumusfenbil.1271503