Araştırma Makalesi
BibTex RIS Kaynak Göster

Lactiplantibacillus plantarum ve iğde (Elaeagnus angustifolia L.) unu kullanılarak simbiyotik dondurma üretimi

Yıl 2024, , 444 - 458, 28.09.2024
https://doi.org/10.29050/harranziraat.1484737

Öz

Bu çalışmanın amacı, süt tozu ve/veya şeker yerine farklı oranlarda iğde ununun (İU) dondurma karışımına dahil edilerek fonksiyonel ve düşük kalorili bir dondurma üretimini sağlamaktır. Bu kapsamda üretilen dondurmalar Lactiplantibacillus plantarum NRIC 1838 kullanılarak probiyotik hale getirilmiş ve simbiyotik dondurmalar hazırlanmıştır. Bu amaçla, 8 farklı dondurma formülasyonu oluşturulmuş ve bu dondurmaların fizikokimyasal, biyoaktif, mikrobiyolojik, termal ve duyusal özellikleri analiz edilmiştir. Sonuçlar, dondurmaların kuru madde içeriği, pH değerleri ve toplam fenolik içeriklerinin sırasıyla % 43.78-46.59, 5.65-6.38 ve 0.25-0.94 mg GAE g-1 olduğunu göstermiştir. Ayrıca, kontrol örneklerinin en yüksek parlaklık değerlerine sahip olduğu ve formülasyonlardaki İU miktarı arttıkça dondurma rengindeki koyuluk miktarının da arttığı tespit edilmiştir. Yanı sıra, probiyotik ve İU ile takviye edilmiş dondurma örneklerinde en yüksek a* ve b* değerleri belirlenirken, en düşük değer probiyotikle zenginleştirilmiş kontrol dondurmalarında belirlenmiştir. Dondurma karışımlarının ve örneklerinin hücre sayıları 7 log CFU/g'dan yüksektir. Farklı oranlarda ve kombinasyonlarda İU, yağsız süt tozu ve şekerin dahil edilmesi, kontrol örnekleriyle karşılaştırıldığında dondurmalardaki termodinamik stabiliteyi azaltmıştır. İU, üretilen örneklerin genel duyusal kabulünde en etkili bileşen olmuştur. Bu sonuçlar, İU ve L. plantarum NRIC 1838 ile zenginleştirilmiş simbiyotik dondurmaların iyi kalite ve duyusal özelliklere sahip olduğunu göstermektedir.

Kaynakça

  • Açu, M., (2014). Production of Ice cream with developed functional properties, Ege University, Institute of Science, Master's thesis, Bornava, İzmir, Türkiye (In Turkish).
  • Acu, M., Kinik, O., & Yerlikaya, O. (2020). Probiotic viability, viscosity, hardness properties and sensorial quality of synbiotic ice creams produced from goat’s milk. Food Science and Technology, 41, 167-173.
  • Akalın, A. S., Karagözlü, C., & Ünal, G. (2008). Rheological properties of reduced-fat and low-fat ice cream containing whey protein isolate and inulin. European Food Research and Technology, 227, 889-895.
  • Akca, S., & Akpinar, A. (2021). The Effects of grape, pomegranate, sesame seed powder and their oils on probiotic ice cream: Total phenolic contents, antioxidant activity and probiotic viability. Food Bioscience, 42, 101203.
  • Akman, P. K., Kutlu, G., & Tornuk, F. (2023). Development and characterization of a novel sodium alginate based active film supplemented with Lactiplantibacillus plantarum postbiotic. International Journal of Biological Macromolecules, 244, 125240.
  • Alamprese, C., Foschino, R., Rossi, M., Pompei, C., & Savani, L. (2002). Survival of Lactobacillus johnsonii La1 and influence of its addition in retail-manufactured ice cream produced with different sugar and fat concentrations. International Dairy Journal, 12(2-3), 201-208.
  • Alamprese, C., Foschino, R., Rossi, M., Pompei, C., & Corti, S. (2005). Effects of Lactobacillus rhamnosus GG addition in ice cream. International journal of dairy technology, 58(4), 200-206.
  • AOAC International, 2000. AOAC International Official Methods of Analysis (17th), AOAC International, Arlington, VA (2000).
  • Arslaner, A., & Salık, M. A. (2020). Functional ice cream technology. Akademik Gıda, 18(2), 180-189.
  • Atlar, G. C., Kutlu, G., & Tornuk, F. (2024). Design and characterization of chitosan-based films incorporated with summer savory (Satureja hortensis L.) essential oil for active packaging. International Journal of Biological Macromolecules, 254, 127732.
  • Bagdat, E. S., Akman, P. K., Kutlu, G., & Tornuk, F. (2024)a. Optimization of spray-drying process parameters for microencapsulation of three probiotic lactic acid bacteria selected by their high viability rate in sucrose and fructose levels and high temperatures. Systems Microbiology and Biomanufacturing, 4, 687-698.
  • Bagdat, E. S., Kutlu, G., & Tornuk, F. (2024b). The effect of free and encapsulated probiotic bacteria on some physicochemical, microbiological, and textural properties of apricot leather (pestil) during storage. Journal of Food Science, Article in press, doi: 10.1111/1750-3841.17245.
  • Bayrakci, H. (2018). Determination of the impact of tahini use on the quality of ice cream, Osmaniye Korkut Ata University, Institute of Science, Master's thesis, Osmaniye, Türkiye (In Turkish).
  • Çakmakçı, S., Topdaş, E. F., Kalın, P., Han, H., Şekerci, P., P. Köse, L., & Gülçin, İ. (2015). Antioxidant capacity and functionality of oleaster (Elaeagnus angustifolia L.) flour and crust in a new kind of fruity ice cream. International Journal of Food Science & Technology, 50(2), 472-481.
  • Di Criscio, T., Fratianni, A., Mignogna, R., Cinquanta, L., Coppola, R., Sorrentino, E., & Panfili, G. (2010). Production of functional probiotic, prebiotic, and synbiotic ice creams. Journal of Dairy Science, 93(10), 4555-4564.
  • dos Santos Leandro, E., de Araújo, E. A., da Conceição, L. L., de Moraes, C. A., & de Carvalho, A. F. (2013). Survival of Lactobacillus delbrueckii UFV H2b20 in ice cream produced with different fat levels and after submission to stress acid and bile salts. Journal of Functional Foods, 5(1), 503-507.
  • Drewnowski, A., & Greenwood, M. R. C. (1983). Cream and sugar: human preferences for high-fat foods. Physiology & behavior, 30(4), 629-633.
  • Elkot, W. F., Ateteallah, A. H., Al-Moalem, M. H., Shahein, M. R., Alblihed, M. A., Abdo, W., & Elmahallawy, E. K. (2022). Functional, physicochemical, rheological, microbiological, and organoleptic properties of synbiotic ice cream produced from camel milk using black rice powder and Lactobacillus acidophilus LA-5. Fermentation, 8(4), 187.
  • El-Sayed, H. S., Salama, H. H., & El-Sayed, S. M. (2014). Production of synbiotic ice cream. International Journal of Chemtech Research, 7(1), 138-147.
  • Erol, K. F., Kutlu, G., Tornuk, F., Guzel, M., & Donmez, I. E. (2023). Determination of antioxidant, anticancer, antidiabetic and antimicrobial activities of Turkish red pine (Pinus brutia Ten.) bark ultrasound-assisted extract as a functional food additive. Acta Alimentaria, 52(1), 102-112.
  • Ertugay, M. F., Yangılar, F., & Çebi, K. (2020). Ice cream with organic kavilca (buckwheat) fibre: Microstructure, thermal, physicochemical and sensory properties. Carpathian Journal of Food Science & Technology, 12(3), 35-50.
  • Falah, F., Zareie, Z., Vasiee, A., Tabatabaee Yazdi, F., Mortazavi, S. A., & Alizadeh Behbahani, B. (2021). Production of synbiotic ice-creams with Lactobacillus brevis PML1 and inulin: functional characteristics, probiotic viability, and sensory properties. Journal of Food Measurement and Characterization, 15(6), 5537-5546.
  • Genovese, A., Balivo, A., Salvati, A., & Sacchi, R. (2022). Functional ice cream health benefits and sensory implications. Food Research International, 111858.
  • Haghani, S., Hadidi, M., Pouramin, S., Adinepour, F., Hasiri, Z., Moreno, A., Munekata, P.E.S. & Lorenzo, J. M. (2021). Application of cornelian cherry (Cornus mas L.) peel in probiotic ice cream: Functionality and viability during storage. Antioxidants, 10(11), 1777.
  • Homayouni, A., Azizi, A., Ehsani, M. R., Yarmand, M. S., & Razavi, S. H. (2008). Effect of microencapsulation and resistant starch on the probiotic survival and sensory properties of synbiotic ice cream. Food Chemistry, 111(1), 50-55.
  • Hwang, J. Y., Shyu, Y. S., & Hsu, C. K. (2009). Grape wine lees improves the rheological and adds antioxidant properties to ice cream. LWT-Food Science and Technology, 42(1), 312-318.
  • Karkar, B., & Şahin, S. (2022). Determination of phenolic compounds profiles and antioxidant properties of oleaster (Elaeagnus angustifolia L.) grown in Turkey. European Food Research and Technology, 248(1), 219-241.
  • Kemsawasd, V., & Chaikham, P. (2020). Effects of frozen storage on viability of probiotics and antioxidant capacities of synbiotic riceberry and sesame-riceberry milk ice creams. Current Research in Nutrition and Food Science Journal, 8(1), 107-121.
  • Karaman, S., Toker, Ö. S., Yüksel, F., Çam, M., Kayacier, A., & Dogan, M. (2014). Physicochemical, bioactive, and sensory properties of persimmon-based ice cream: Technique for order preference by similarity to ideal solution to determine optimum concentration. Journal of Dairy Science, 97(1), 97-110.
  • Kutlu, G. 2024. Valorization of various nut residues grown in Turkiye: Antioxidant, anti- cholinesterase, anti-diabetic and cytotoxic activities. Food Science & Nutrition. 10.1002/fsn3.4103
  • Kutlu, G., Baslar, M., Yilmaz, M. T., Karaman, S., Vardar, U. S., Poyraz-Yildirim, E., & Sagdic, O. (2024). Manufacturing of emulsion type garlic paste: Characterization of rheological properties as affected by lecithin, guar gum, and olive oil using steady, dynamic, and three interval thixotropy tests. Journal of Food Process Engineering, 47(1), e14522.
  • Lavini, A., Mohtarami, F., Pirsa, S., & Talebi, A. (2021). The effect of Elaeagnus angustifolia (oleaster) powder on physicochemical, textural and sensory properties of gluten free bread. Journal of Food Science and Technology (Iran), 18(119), 1-15.
  • Lee, Y.K., & Salminen, S. The coming of age of probiotics (1995). Trends in Food Science & Technology, 6(7), 241–245.
  • Öztürk, H. İ., Demirci, T., & Akın, N. (2018). Production of functional probiotic ice creams with white and dark blue fruits of Myrtus communis: The comparison of the prebiotic potentials on Lactobacillus casei 431 and functional characteristics. LWT, 90, 339-345.
  • Pandiyan, C., Villi, A. R., Kumaresan, G., Murugan, B., & Rajarajan, G. (2012). Effect of incorporation of inulin on the survivability of Lactobacillus acidophilus in synbiotic ice cream. International Food Research Journal, 19(4), 1729.
  • Phuapaiboon, P. (2016). Immobilization of probiotic bacteria with banana flour and effect on quality of synbiotic ice cream and survival under simulated gastrointestinal conditions. Carpathian Journal of Food Science & Technology, 8(4), 33-46.
  • Sabet-Sarvestani, N., Eskandari, M. H., Hosseini, S. M. H., Niakousari, M., Hashemi Gahruie, H., & Khalesi, M. (2021). Production of synbiotic ice cream using Lactobacillus casei/Lactobacillus plantarum and fructooligosaccharides. Journal of Food Processing and Preservation, 45(5), e15423.
  • Sagdic, O., Ozturk, I., Cankurt, H. & Tornuk, F. (2012). Interaction between some phenolic compounds and probiotic bacterium in functional ice cream production. Food and Bioprocess Technology, 5, 2964–2971.
  • Şahin, N. (2023). Bioactive components and nutritional properties of fiber-rich cookies produced with different parts of oleaster (Elaeagnus angustifolia L.). Journal of the Science of Food and Agriculture, 103(14), 6975-6983.
  • Sahan, Y., Dundar, A. N., Aydin, E., Kilci, A., Dulger, D., Kaplan, F. B., Gocmen, D. & Celik, G. (2013). Characteristics of cookies supplemented with oleaster (Elaeagnus angustifolia L.) Flour. I physicochemical, sensorial and textural properties. Journal of Agricultural Science, 5(2), 160.
  • Sauvageot, N., Beaufils, S., Mazé, A., Deutscher, J., & Hartke, A. (2006). Cloning and characterization of a gene encoding a cold-shock protein in Lactobacillus casei. FEMS microbiology letters, 254(1), 55-62.
  • Shazly, A. B., Fouad, M. T., Elaaser, M., Sayed, R. S., & Abd El-Aziz, M. (2022). Probiotic coffee ice cream as an innovative functional dairy food. Journal of Food Processing and Preservation, e17253.
  • Soukoulis, C., Lebesi, D., & Tzia, C. (2009). Enrichment of ice cream with dietary fibre: Effects on rheological properties, ice crystallisation and glass transition phenomena. Food Chemistry, 115(2), 665-671.
  • Tatari, S., Shahidi, F., Varidi, M. J., Milani, E., & Mohebbi, M. (2022). The effect of extrusion variables on physical and functional properties of expanded breakfast cereal based on whole oleaster and oat flours. Journal of Food Science and Technology (Iran), 19(124), 257-269.
  • Yavuz, Z. (2019). Investigation of the effect of oleaster powder incorporation as dietary fiber source on dough and bread quality. Yıldız Technical University, Institute of Science, Master's Thesis, 1-42, İstanbul, Türkiye (In Turkish).
  • Yavuz, Z., Törnük, F., & Durak, M. Z. (2021). Effect of oleaster flour addition as a source of dietary fiber on rheological properties of wheat dough. European Food Science and Engineering, 2(1), 7-12.
  • Yavuz, Z., Kutlu, G., & Tornuk, F. (2022). Incorporation of oleaster (Elaeagnus angustifolia L.) flour into white bread as a source of dietary fibers. Journal of Food Processing and Preservation, 46(11), e17050. Zangeneh, N., Barzegar, H., Mehrnia, M. A., Noshad, M., & Hojjati, M. (2021). Effect of oleaster (Elaeagnus angustifolia) flour on gluten free cake properties. Iranian Food Science and Technology Research Journal, 17(1), 69-81.

Symbiotic ice-cream production using Lactiplantibacillus plantarum and oleaster (Elaeagnus angustifolia L.) flour

Yıl 2024, , 444 - 458, 28.09.2024
https://doi.org/10.29050/harranziraat.1484737

Öz

The aim of this study was to produce a functional and low-calorie ice cream by incorporating oleaster flour (OF) into the ice cream mix formulation at different ratios as milk powder and/or sugar substitute. The ice cream was also probiotificated by supplementation of Lactiplantibacillus plantarum NRIC 1838, thus preparing symbiotic ice-creams. For this purpose, 8 different ice-cream formulations were designed and their physicochemical, bioactive, microbiological, thermal and sensory properties were analyzed. The results showed that dry matter content, pH values and total phenolic content of ice creams were in the range of 43.78-46.59 %, 5.65-6.38, and 0.25-0.94 mg GAE g-1, respectively. Addition of OF made the samples darker, as indicated by lower L* values. Additionally, the control samples had the highest brightness while the darkness of the ice-creams increased as the amount of OF in the formulations. Furthermore, the highest a* and b* values were determined in the ice cream sample supplemented with probiotic and OF while the lowest value was determined in the reference ice-creams enriched with probiotics. The cell counts of the ice cream mixes and samples were higher than 7 log CFU g-1. The incorporation of OF, skimmed milk powder, and sugar in the different proportions and combinations led to a reduction in thermodynamic stability of ice-creams compared the control samples. The amount of OF was the most effective ingredient in the overall sensory acceptance of the produced samples. These results suggest that symbiotic ice-creams enriched with OF and Lactiplantibacillus plantarum NRIC 1838 exhibited good quality and sensory characteristics.

Etik Beyan

Not available.

Destekleyen Kurum

Not available.

Teşekkür

Prebiotic and probiotic (synbiotic) ice cream with oleaster flour and production method has been registered by the Turkish Patent and Trademark Agency in Turkiye. Patent Number: TR 2019/23160.

Kaynakça

  • Açu, M., (2014). Production of Ice cream with developed functional properties, Ege University, Institute of Science, Master's thesis, Bornava, İzmir, Türkiye (In Turkish).
  • Acu, M., Kinik, O., & Yerlikaya, O. (2020). Probiotic viability, viscosity, hardness properties and sensorial quality of synbiotic ice creams produced from goat’s milk. Food Science and Technology, 41, 167-173.
  • Akalın, A. S., Karagözlü, C., & Ünal, G. (2008). Rheological properties of reduced-fat and low-fat ice cream containing whey protein isolate and inulin. European Food Research and Technology, 227, 889-895.
  • Akca, S., & Akpinar, A. (2021). The Effects of grape, pomegranate, sesame seed powder and their oils on probiotic ice cream: Total phenolic contents, antioxidant activity and probiotic viability. Food Bioscience, 42, 101203.
  • Akman, P. K., Kutlu, G., & Tornuk, F. (2023). Development and characterization of a novel sodium alginate based active film supplemented with Lactiplantibacillus plantarum postbiotic. International Journal of Biological Macromolecules, 244, 125240.
  • Alamprese, C., Foschino, R., Rossi, M., Pompei, C., & Savani, L. (2002). Survival of Lactobacillus johnsonii La1 and influence of its addition in retail-manufactured ice cream produced with different sugar and fat concentrations. International Dairy Journal, 12(2-3), 201-208.
  • Alamprese, C., Foschino, R., Rossi, M., Pompei, C., & Corti, S. (2005). Effects of Lactobacillus rhamnosus GG addition in ice cream. International journal of dairy technology, 58(4), 200-206.
  • AOAC International, 2000. AOAC International Official Methods of Analysis (17th), AOAC International, Arlington, VA (2000).
  • Arslaner, A., & Salık, M. A. (2020). Functional ice cream technology. Akademik Gıda, 18(2), 180-189.
  • Atlar, G. C., Kutlu, G., & Tornuk, F. (2024). Design and characterization of chitosan-based films incorporated with summer savory (Satureja hortensis L.) essential oil for active packaging. International Journal of Biological Macromolecules, 254, 127732.
  • Bagdat, E. S., Akman, P. K., Kutlu, G., & Tornuk, F. (2024)a. Optimization of spray-drying process parameters for microencapsulation of three probiotic lactic acid bacteria selected by their high viability rate in sucrose and fructose levels and high temperatures. Systems Microbiology and Biomanufacturing, 4, 687-698.
  • Bagdat, E. S., Kutlu, G., & Tornuk, F. (2024b). The effect of free and encapsulated probiotic bacteria on some physicochemical, microbiological, and textural properties of apricot leather (pestil) during storage. Journal of Food Science, Article in press, doi: 10.1111/1750-3841.17245.
  • Bayrakci, H. (2018). Determination of the impact of tahini use on the quality of ice cream, Osmaniye Korkut Ata University, Institute of Science, Master's thesis, Osmaniye, Türkiye (In Turkish).
  • Çakmakçı, S., Topdaş, E. F., Kalın, P., Han, H., Şekerci, P., P. Köse, L., & Gülçin, İ. (2015). Antioxidant capacity and functionality of oleaster (Elaeagnus angustifolia L.) flour and crust in a new kind of fruity ice cream. International Journal of Food Science & Technology, 50(2), 472-481.
  • Di Criscio, T., Fratianni, A., Mignogna, R., Cinquanta, L., Coppola, R., Sorrentino, E., & Panfili, G. (2010). Production of functional probiotic, prebiotic, and synbiotic ice creams. Journal of Dairy Science, 93(10), 4555-4564.
  • dos Santos Leandro, E., de Araújo, E. A., da Conceição, L. L., de Moraes, C. A., & de Carvalho, A. F. (2013). Survival of Lactobacillus delbrueckii UFV H2b20 in ice cream produced with different fat levels and after submission to stress acid and bile salts. Journal of Functional Foods, 5(1), 503-507.
  • Drewnowski, A., & Greenwood, M. R. C. (1983). Cream and sugar: human preferences for high-fat foods. Physiology & behavior, 30(4), 629-633.
  • Elkot, W. F., Ateteallah, A. H., Al-Moalem, M. H., Shahein, M. R., Alblihed, M. A., Abdo, W., & Elmahallawy, E. K. (2022). Functional, physicochemical, rheological, microbiological, and organoleptic properties of synbiotic ice cream produced from camel milk using black rice powder and Lactobacillus acidophilus LA-5. Fermentation, 8(4), 187.
  • El-Sayed, H. S., Salama, H. H., & El-Sayed, S. M. (2014). Production of synbiotic ice cream. International Journal of Chemtech Research, 7(1), 138-147.
  • Erol, K. F., Kutlu, G., Tornuk, F., Guzel, M., & Donmez, I. E. (2023). Determination of antioxidant, anticancer, antidiabetic and antimicrobial activities of Turkish red pine (Pinus brutia Ten.) bark ultrasound-assisted extract as a functional food additive. Acta Alimentaria, 52(1), 102-112.
  • Ertugay, M. F., Yangılar, F., & Çebi, K. (2020). Ice cream with organic kavilca (buckwheat) fibre: Microstructure, thermal, physicochemical and sensory properties. Carpathian Journal of Food Science & Technology, 12(3), 35-50.
  • Falah, F., Zareie, Z., Vasiee, A., Tabatabaee Yazdi, F., Mortazavi, S. A., & Alizadeh Behbahani, B. (2021). Production of synbiotic ice-creams with Lactobacillus brevis PML1 and inulin: functional characteristics, probiotic viability, and sensory properties. Journal of Food Measurement and Characterization, 15(6), 5537-5546.
  • Genovese, A., Balivo, A., Salvati, A., & Sacchi, R. (2022). Functional ice cream health benefits and sensory implications. Food Research International, 111858.
  • Haghani, S., Hadidi, M., Pouramin, S., Adinepour, F., Hasiri, Z., Moreno, A., Munekata, P.E.S. & Lorenzo, J. M. (2021). Application of cornelian cherry (Cornus mas L.) peel in probiotic ice cream: Functionality and viability during storage. Antioxidants, 10(11), 1777.
  • Homayouni, A., Azizi, A., Ehsani, M. R., Yarmand, M. S., & Razavi, S. H. (2008). Effect of microencapsulation and resistant starch on the probiotic survival and sensory properties of synbiotic ice cream. Food Chemistry, 111(1), 50-55.
  • Hwang, J. Y., Shyu, Y. S., & Hsu, C. K. (2009). Grape wine lees improves the rheological and adds antioxidant properties to ice cream. LWT-Food Science and Technology, 42(1), 312-318.
  • Karkar, B., & Şahin, S. (2022). Determination of phenolic compounds profiles and antioxidant properties of oleaster (Elaeagnus angustifolia L.) grown in Turkey. European Food Research and Technology, 248(1), 219-241.
  • Kemsawasd, V., & Chaikham, P. (2020). Effects of frozen storage on viability of probiotics and antioxidant capacities of synbiotic riceberry and sesame-riceberry milk ice creams. Current Research in Nutrition and Food Science Journal, 8(1), 107-121.
  • Karaman, S., Toker, Ö. S., Yüksel, F., Çam, M., Kayacier, A., & Dogan, M. (2014). Physicochemical, bioactive, and sensory properties of persimmon-based ice cream: Technique for order preference by similarity to ideal solution to determine optimum concentration. Journal of Dairy Science, 97(1), 97-110.
  • Kutlu, G. 2024. Valorization of various nut residues grown in Turkiye: Antioxidant, anti- cholinesterase, anti-diabetic and cytotoxic activities. Food Science & Nutrition. 10.1002/fsn3.4103
  • Kutlu, G., Baslar, M., Yilmaz, M. T., Karaman, S., Vardar, U. S., Poyraz-Yildirim, E., & Sagdic, O. (2024). Manufacturing of emulsion type garlic paste: Characterization of rheological properties as affected by lecithin, guar gum, and olive oil using steady, dynamic, and three interval thixotropy tests. Journal of Food Process Engineering, 47(1), e14522.
  • Lavini, A., Mohtarami, F., Pirsa, S., & Talebi, A. (2021). The effect of Elaeagnus angustifolia (oleaster) powder on physicochemical, textural and sensory properties of gluten free bread. Journal of Food Science and Technology (Iran), 18(119), 1-15.
  • Lee, Y.K., & Salminen, S. The coming of age of probiotics (1995). Trends in Food Science & Technology, 6(7), 241–245.
  • Öztürk, H. İ., Demirci, T., & Akın, N. (2018). Production of functional probiotic ice creams with white and dark blue fruits of Myrtus communis: The comparison of the prebiotic potentials on Lactobacillus casei 431 and functional characteristics. LWT, 90, 339-345.
  • Pandiyan, C., Villi, A. R., Kumaresan, G., Murugan, B., & Rajarajan, G. (2012). Effect of incorporation of inulin on the survivability of Lactobacillus acidophilus in synbiotic ice cream. International Food Research Journal, 19(4), 1729.
  • Phuapaiboon, P. (2016). Immobilization of probiotic bacteria with banana flour and effect on quality of synbiotic ice cream and survival under simulated gastrointestinal conditions. Carpathian Journal of Food Science & Technology, 8(4), 33-46.
  • Sabet-Sarvestani, N., Eskandari, M. H., Hosseini, S. M. H., Niakousari, M., Hashemi Gahruie, H., & Khalesi, M. (2021). Production of synbiotic ice cream using Lactobacillus casei/Lactobacillus plantarum and fructooligosaccharides. Journal of Food Processing and Preservation, 45(5), e15423.
  • Sagdic, O., Ozturk, I., Cankurt, H. & Tornuk, F. (2012). Interaction between some phenolic compounds and probiotic bacterium in functional ice cream production. Food and Bioprocess Technology, 5, 2964–2971.
  • Şahin, N. (2023). Bioactive components and nutritional properties of fiber-rich cookies produced with different parts of oleaster (Elaeagnus angustifolia L.). Journal of the Science of Food and Agriculture, 103(14), 6975-6983.
  • Sahan, Y., Dundar, A. N., Aydin, E., Kilci, A., Dulger, D., Kaplan, F. B., Gocmen, D. & Celik, G. (2013). Characteristics of cookies supplemented with oleaster (Elaeagnus angustifolia L.) Flour. I physicochemical, sensorial and textural properties. Journal of Agricultural Science, 5(2), 160.
  • Sauvageot, N., Beaufils, S., Mazé, A., Deutscher, J., & Hartke, A. (2006). Cloning and characterization of a gene encoding a cold-shock protein in Lactobacillus casei. FEMS microbiology letters, 254(1), 55-62.
  • Shazly, A. B., Fouad, M. T., Elaaser, M., Sayed, R. S., & Abd El-Aziz, M. (2022). Probiotic coffee ice cream as an innovative functional dairy food. Journal of Food Processing and Preservation, e17253.
  • Soukoulis, C., Lebesi, D., & Tzia, C. (2009). Enrichment of ice cream with dietary fibre: Effects on rheological properties, ice crystallisation and glass transition phenomena. Food Chemistry, 115(2), 665-671.
  • Tatari, S., Shahidi, F., Varidi, M. J., Milani, E., & Mohebbi, M. (2022). The effect of extrusion variables on physical and functional properties of expanded breakfast cereal based on whole oleaster and oat flours. Journal of Food Science and Technology (Iran), 19(124), 257-269.
  • Yavuz, Z. (2019). Investigation of the effect of oleaster powder incorporation as dietary fiber source on dough and bread quality. Yıldız Technical University, Institute of Science, Master's Thesis, 1-42, İstanbul, Türkiye (In Turkish).
  • Yavuz, Z., Törnük, F., & Durak, M. Z. (2021). Effect of oleaster flour addition as a source of dietary fiber on rheological properties of wheat dough. European Food Science and Engineering, 2(1), 7-12.
  • Yavuz, Z., Kutlu, G., & Tornuk, F. (2022). Incorporation of oleaster (Elaeagnus angustifolia L.) flour into white bread as a source of dietary fibers. Journal of Food Processing and Preservation, 46(11), e17050. Zangeneh, N., Barzegar, H., Mehrnia, M. A., Noshad, M., & Hojjati, M. (2021). Effect of oleaster (Elaeagnus angustifolia) flour on gluten free cake properties. Iranian Food Science and Technology Research Journal, 17(1), 69-81.
Toplam 47 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Gıda Mühendisliği
Bölüm Araştırma Makaleleri
Yazarlar

Beyza Nur Süren 0009-0005-4452-9592

Sedanur Salman 0009-0005-2409-6136

Emel Kaya 0009-0002-4505-5059

Yağmur Büyükkal 0009-0003-5651-9311

Gözde Kutlu 0000-0001-7111-1726

Fatih Törnük 0000-0002-7313-0207

Erken Görünüm Tarihi 28 Eylül 2024
Yayımlanma Tarihi 28 Eylül 2024
Gönderilme Tarihi 15 Mayıs 2024
Kabul Tarihi 5 Ağustos 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Süren, B. N., Salman, S., Kaya, E., Büyükkal, Y., vd. (2024). Symbiotic ice-cream production using Lactiplantibacillus plantarum and oleaster (Elaeagnus angustifolia L.) flour. Harran Tarım Ve Gıda Bilimleri Dergisi, 28(3), 444-458. https://doi.org/10.29050/harranziraat.1484737

Derginin Tarandığı İndeksler

13435  19617   22065  13436  134401344513449 13439 13464  22066   22069  13466 

10749 Harran Tarım ve Gıda Bilimi Dergisi, Creative Commons Atıf –Gayrı Ticari 4.0 Uluslararası (CC BY-NC 4.0) Lisansı ile lisanslanmıştır.