Araştırma Makalesi
BibTex RIS Kaynak Göster

Toprağa Uygulanan Tütün ve Badem Atıklarından Elde Edilen Biyokömürlerin Elementel Analizleri ve SEM Özelliklerinin Karşılaştırılması

Yıl 2019, Cilt: 23 Sayı: 4, 500 - 510, 23.12.2019
https://doi.org/10.29050/harranziraat.565323

Öz

Tarımda sürdürülebilirlik kavramının
önemsendiği bir süreçte yenilenebilir enerji kaynağı olarak kullanılan
biyokütlenin dönüşümü ve atık yönetimi gibi konular ilgi çekmeye başlamıştır.
Bu nedenle çalışmada, toprağa uygulanan tütün ve badem atıklarından elde edilen
biyokömürün elementel özellikleri ve mikro morfolojik açıdan topraklar üzerine
etkileri araştırılmıştır. Çalışma, tarla koşullarında, üç tekerrürlü olarak,
her blokta 5 parsel oluşturulmuş olup, bu parsellerden ikisine tütün, ikisine
badem biyokömürü, bir tanesine kimyasal gübre uygulaması yapılarak anason
bitkisi (Pimpinella anisum L.)
yetiştirilmiştir. Denemede parsellerde kullanılan biyokömürlerin (tütün ve
badem) elementel, toplam karbon (TC), inorganik karbon (IC), toplam organik
karbon (TOC) içerikleri ve deneme parsellerinden alınan toprak örneklerinin
mikromorfolojik özellikleri irdelenmiştir. Araştırma sonuçlarında badem
biyokömüründe % C, % H, % N ve % S değerleri tütün biyokömürüne göre daha
yüksek düzeyde saptanmıştır. Tütün biyokömüründe EC, pH ve CaCO3
değerleri badem biyokömürüne göre daha yüksek düzeyde belirlenmiştir. Badem
biyokömüründe Ca, Mg ve Zn içerikleri, tütün biyokömüründe ise Fe ve Cu
miktarları daha yüksek düzeyde elde edilmiştir. Mikromorfolojik açıdan tütün
biyokömürü kullanılan parseldeki (ANS 5) agregatlaşma diğer parsellere göre
farklı düzeyde gözlemlenmiştir.
Tütün ve badem biyokömüründe
morfolojik olarak deformasyon düzeyi diğer biyokömür ve gübre ilave edilen
parsellere göre daha fazla düzeyde olup, buna bağlı olarak daha fazla yüzey
alanı oluşturma potansiyeline sahip olduğu belirlenmiştir. Bitki
yetiştiriciliği ve toprak verimliliği açısından
badem biyokömürünün tütün biyokömürüne göre daha iyi
özelliklere sahip olduğu belirlenmiştir.

Kaynakça

  • Abdullah, H., Mediaswanti, K. A., ve Wu, H. (2010). Biochar as a fuel: 2. Significant differences in fuel quality and ash properties of biochars from various biomass components of Mallee trees. Energy & Fuels, 24(3), 1972-1979.
  • Akalın, M. K., ve Karagöz, S. (2011). Pyrolysis of Tobacco Resıdue: Part 1. Thermal. Bioresources, 6(2), 1520-1531.
  • Allison, L. E., ve Moodie, C. D. (1965). Carbonate. Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties, (methodsofsoilanb), 1379-1396.
  • Baldock, J. A., ve Smernik, R. J. (2002). Chemical composition and bioavailability of thermally altered Pinus resinosa (Red pine) wood. Org. Geochem. 33:1093–1109. http://dx.doi. org/10.1016/S0146-6380(02)00062-1.
  • Bird, M., Keitel, C., ve Meredith, W. (2017). Analysis of biochars for C, H, N, O and S by elemental analyser. Biochar: A Guide to Analytical Methods, 39.
  • Burns, K. J. (2014). The effect of biochar addition on soil structure and changes to aged biochar particles in soil. This thesis is presented fort the Degree of Master of Science at The University of Western Australia, School of Earth and Environment. P. 84-94
  • Calvelo Pereira, R., Kaal, J., Camps Arbestain, M., Pardo Lorenzo, R., Aitkenhead, W., Hedley, M.,… Maciá-Agulló, J. (2011). Contribution to characterisation of biochar to estimate the labile fraction of carbon. Org. Geochem. 42: 1331–1342. http://dx.doi.org/10.1016/j.orggeochem.2011.09.002.Cantrell, K. B., Hunt, P. G., Uchimiya, M., Novak, J. M., ve Ro, K. S. (2012). Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresource technology, 107, 419-428.
  • Cao, X., ve Harris, W. (2010). Properties of dairy-manure-derived biochar pertinent to its potential use in remediation. Bioresource technology, 101(14), 5222-5228.
  • Chan, K. Y., Van Zwieten, L., Meszaros, I., Downie, A., ve Joseph, S. (2008). Using poultry litter biochars as soil amendments. Soil Research, 46(5), 437-444.
  • Çelik, A., ve Akça, E. (2017). Adıyaman’da eğimli akarsu seki topraklarının sürdürülebilir kullanımı için öneriler. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 27(1), 130-141.
  • Çelik, A., İnan, M., ve Sakin, E. (2018). Tütün ve badem atıklarından elde edilen biyokömürün bazı toprak kalite parametreleri ile anason bitkisinin verimine etkileri, II. Uluslararası Multidisipliner Çalışmalar Kongresi tam bildiriler kitabı, 353-371.
  • Devine, S., Markewitz, D., Hendrix, P., ve Coleman, D. (2014). Soil aggregates and associated organic matter under conventional tillage, no-tillage, and forest succession after three decades. PloS one, 9(1), e84988.
  • El-Ramady, H. R., Alshaal, T. A., Amer, M., Domokos-Szabolcsy, É., Elhawat, N., Prokisch, J.,… Fári, M. (2014). Soil quality and plant nutrition. In Sustainable Agriculture Reviews 14 (pp. 345-447). Springer, Cham.
  • Enders, A., Hanley, K., Whitman, T., Joseph, S., ve Lehmann, J. (2012). Characterization of biochars to evaluate recalcitrance and agronomic performance. Bioresource Technology 114, 644–653. doi:10.1016/j.biortech.2012.03.022.
  • FitzPatrick, E. A. (1993). Soil Microscopy and Micromorphology. Chichester No. 631.43 F5. John Wiley & Sons. 433P.
  • Günal, E. A., ve Erdem, H. (2018). Biyokömür; Tanımı, Kullanımı ve Tarım Topraklarındaki Etkileri. ADÜ Ziraat Derg, 2018;15(2):87-93.
  • Jeffery, S., Abalos, D., Prodana, M., Bastos, A. C., Van Groenigen, J. W., Hungate, B. A.,… Verheijen, F. (2017). Biochar boosts tropical but not temperate crop yields. Environmental Research Letters, 12(5), 053001.
  • KHGM, (1997). Adıyaman Kâhta Ovası Sulama Proje Sahası Detaylı Toprak Etütleri, Köy Hizmetleri Genel Müdürlüğü Etüd ve Proje Dairesi Başkanlığı, Ankara, s. 250.
  • Kızılgöz, İ., Sakin, E., ve Gürsöz, S. (2011). Ovacık Köyü'nde (Şanlıurfa) Yetiştirilen Asma (Vitis vinifera L.) Çeşitlerinin Mineral Beslenme Durumunun Değerlendirilmesi. Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 25(1):1-10.
  • Knicker, H., Müller, P., ve Hilscher, A. (2007). How useful is chemical oxidation with dichromate for the determination of “Black Carbon” in fire-affected soils? Geoderma 142: 178–196. http://dx.doi.org/10.1016/j.geoderma.2007.08.010.
  • Krishnakumar, S., Rajalakshmi, A. G., Balaganesh, B., Manikandan, P., Vinoth, C., ve Rajendran, V. (2014). Impact of biochar on soil health. Int. J. Adv. Res, 2(4), 933-950.
  • Lehmann, J., da Silva, J. P., Steiner, C., Nehls, T., Zech, W., ve Glaser, B. (2003). Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant and soil, 249(2), 343-357.
  • Lehmann, J., ve Rondon, M. (2006). Bio-char soil management on highly weathered soils in the humid tropics. Biological approaches to sustainable soil systems, 113(517), e530.
  • Luo, L., ve Gu, J. D. (2016). Alteration of extracellular enzyme activity and microbial abundance by biochar addition: Implication for carbon sequestration in subtropical mangrove sediment. Journal of environmental management, 182, 29-36.
  • McBeath, A. V., Wurster, C. M., ve Bird, M. I. (2015). Influence of feedstock properties and pyrolysis conditions on biochar carbon stability as determined by hydrogen pyrolysis. Biomass and Bioenergy 73, 155–173. doi:10.1016/j. biombioe.2014.12.022.
  • Mohammed, I. Y., Abakr, Y. A., ve Mokaya, R. (2018). Valorisation of adzuki bean waste to biofuel precursors via pyrolysis: kinetics, product distribution and characterisation. Biomass Conversion and Biorefinery, 8(3), 699-710.
  • Namgay, T., Singh, B., ve Singh, B. P. (2010). Influence of biochar application to soil on the availability of As, Cd, Cu, Pb, and Zn to maize (Zea mays L.). Soil Research, 48(7), 638-647.
  • Ogawa, M., Okimori, Y., ve Takahashi, F. (2006). Carbon sequestration by carbonization of biomass and forestation: Three case studies. Mitigation and Adaptation Strategies for Global Change 11: 429–444
  • Özdemir, N., Gülser, C., Ekberli, İ., ve Özkaptan, S. (2005). Toprak düzenleyicilerinin asit toprakta strüktürel dayanıklılığa etkisi. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 36(2), 151-156.
  • Peng, X., Ye, L. L., Wang, C. H., Zhou, H., ve Sun, B. (2011). Temperature- and duration-dependent rice straw-derived biochar: characteristics and its effects on soil properties of an ultisol in southern china. Soil Till. Research, 112, 159–166.
  • Qin, X., Li, Y., Wang, H., Liu, C., Li, J., Wan, Y., … Liao, Y. (2016). Long-term effect of biochar application on yield-scaled greenhouse gas emissions in a rice paddy cropping system: a four-year case study in south China. Sci. Total Environ. 570: 1390–1401. http://dx.doi.org/10.1016/j.scitotenv.2016.06.222.
  • Richards, L. A. (1954). Diagnosis and improvements saline and alkali soils. U.S. Dept. Agr. Handbook, 60.
  • Taghizadeh-Toosi, A., Clough, T. J., Sherlock, R. R., ve Condron, L. M. (2012). Biochar adsorbed ammonia is bioavailable. Plant and soil, 350(1-2), 57-69.
  • Sakin, E., ve Yanardag, İ.H. (2019). Effect of Applıcatıon of Sheep Manure and its Bıochar on Carbon Emissions in Salt Affected Calcareous Soil in Sanlıurfa Regıon Se Turkey.  Fresenius Environmental Bulletin 28(4):2553-2560.
  • Sönmez, S., Kaplan, M., Sönmez, N. K., ve Kaya, H. (2006). Topraktan Yapılan Bakır Uygulamalarının Toprak pH’sı ve Bitki Besin Maddesi İçerikleri Üzerine Etkisi. Akdeniz Üniversitesi Ziraat Fakültesi Dergisi, 19(1), 151-158.
  • Steiner, C., Teixeira, W. G., Lehmann, J., Nehls, T., de Macêdo, J. L. V., Blum, W. E. H.,… Zech, W. (2007). Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered central Amazonian upland soil. Plant and Soil. 291, 275–290.
  • Tiftik, B. E. (2006). Çay Fabrikası Atığının Pirolizi ve Piroliz Ürünlerinin İncelenmesi Yüksek Lisans Tezi, Ankara Üniversitesi, Ankara, Türkiye.
  • Veiga, T. R. L. A., Lima, J. T., Dessimoni, A. L. D. A., Pego, M. F. F., Soares, J. R., ve Trugilho, P. F. (2017). Different Plant Biomass Characterizations for Biochar Production. Cerne, 23(4), 529-536.
  • Whalen, J. K., ve Chang, C. (2002). Macroaggregate characteristics fin cultivated soil after 25 annual manure applications. Soil Sci. Soc. Am. J., 66, 1637-1647.
  • Yu, X.Y., Ying, G. G., ve Kookana, R. S. (2006). Sorption and desorption behaviors of diuron in soils amended with charcoal. Journal of Agricultural and Food Chemistry, 54: 8545-8550.

Elementary analyses and comparison of SEM characteristics of biochars obtained from tobacco and almond residues applied to soil

Yıl 2019, Cilt: 23 Sayı: 4, 500 - 510, 23.12.2019
https://doi.org/10.29050/harranziraat.565323

Öz

In an era where the concept of
agricultural sustainability is becoming more and more important, matters such
as recycling of biomass, which is used as a source of renewable energy, and
waste management are starting to become prominent. Hence, this study is
examining the elementary characteristics of biomass obtained from tobacco and
almond residues applied to soil, and its micromorphologic effect on soil. The
study has been conducted with three repetitions under field conditions, with 5
parcels in each block. Two of these parcels have been applied with tobacco, two
with biochar and one with chemical fertilizer to grow aniseed plant (Pimpinella anisum L.). During the trial,
elementary, total carbon (TC), inorganic carbon (IC), total organic carbon
(TOC) contents of the biochars (tobacco and almond) and the micromorphologic
characteristics of the soil samples taken from the parcels have been analyzed.
Study outcomes have indicated higher C %, H %, N % and S % values for almond
biochar when compared to tobacco biochar. EC, pH and CaCO3 values have been found
to be higher in tobacco biochar than in almond biochar. Ca, Mg and Zn contents
were higher in almond biochar while Fe and Cu contents were higher in tobacco
biochar. In micromorphologic terms, the aggregation in the parcel (ANS 5) where
tobacco biochar was used, has been observed to be at a different level than the
other parcels. In tobacco and almond biochar, the morphologic deformation level
has been higher than the parcels applied with other biochar and fertilizer,
hence it has been determined to have a potential of forming a greater surface
area. It has been concluded that almond biochar have better plant cultivation
and soil fertility characteristics compared to almond biochar. 

Kaynakça

  • Abdullah, H., Mediaswanti, K. A., ve Wu, H. (2010). Biochar as a fuel: 2. Significant differences in fuel quality and ash properties of biochars from various biomass components of Mallee trees. Energy & Fuels, 24(3), 1972-1979.
  • Akalın, M. K., ve Karagöz, S. (2011). Pyrolysis of Tobacco Resıdue: Part 1. Thermal. Bioresources, 6(2), 1520-1531.
  • Allison, L. E., ve Moodie, C. D. (1965). Carbonate. Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties, (methodsofsoilanb), 1379-1396.
  • Baldock, J. A., ve Smernik, R. J. (2002). Chemical composition and bioavailability of thermally altered Pinus resinosa (Red pine) wood. Org. Geochem. 33:1093–1109. http://dx.doi. org/10.1016/S0146-6380(02)00062-1.
  • Bird, M., Keitel, C., ve Meredith, W. (2017). Analysis of biochars for C, H, N, O and S by elemental analyser. Biochar: A Guide to Analytical Methods, 39.
  • Burns, K. J. (2014). The effect of biochar addition on soil structure and changes to aged biochar particles in soil. This thesis is presented fort the Degree of Master of Science at The University of Western Australia, School of Earth and Environment. P. 84-94
  • Calvelo Pereira, R., Kaal, J., Camps Arbestain, M., Pardo Lorenzo, R., Aitkenhead, W., Hedley, M.,… Maciá-Agulló, J. (2011). Contribution to characterisation of biochar to estimate the labile fraction of carbon. Org. Geochem. 42: 1331–1342. http://dx.doi.org/10.1016/j.orggeochem.2011.09.002.Cantrell, K. B., Hunt, P. G., Uchimiya, M., Novak, J. M., ve Ro, K. S. (2012). Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresource technology, 107, 419-428.
  • Cao, X., ve Harris, W. (2010). Properties of dairy-manure-derived biochar pertinent to its potential use in remediation. Bioresource technology, 101(14), 5222-5228.
  • Chan, K. Y., Van Zwieten, L., Meszaros, I., Downie, A., ve Joseph, S. (2008). Using poultry litter biochars as soil amendments. Soil Research, 46(5), 437-444.
  • Çelik, A., ve Akça, E. (2017). Adıyaman’da eğimli akarsu seki topraklarının sürdürülebilir kullanımı için öneriler. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 27(1), 130-141.
  • Çelik, A., İnan, M., ve Sakin, E. (2018). Tütün ve badem atıklarından elde edilen biyokömürün bazı toprak kalite parametreleri ile anason bitkisinin verimine etkileri, II. Uluslararası Multidisipliner Çalışmalar Kongresi tam bildiriler kitabı, 353-371.
  • Devine, S., Markewitz, D., Hendrix, P., ve Coleman, D. (2014). Soil aggregates and associated organic matter under conventional tillage, no-tillage, and forest succession after three decades. PloS one, 9(1), e84988.
  • El-Ramady, H. R., Alshaal, T. A., Amer, M., Domokos-Szabolcsy, É., Elhawat, N., Prokisch, J.,… Fári, M. (2014). Soil quality and plant nutrition. In Sustainable Agriculture Reviews 14 (pp. 345-447). Springer, Cham.
  • Enders, A., Hanley, K., Whitman, T., Joseph, S., ve Lehmann, J. (2012). Characterization of biochars to evaluate recalcitrance and agronomic performance. Bioresource Technology 114, 644–653. doi:10.1016/j.biortech.2012.03.022.
  • FitzPatrick, E. A. (1993). Soil Microscopy and Micromorphology. Chichester No. 631.43 F5. John Wiley & Sons. 433P.
  • Günal, E. A., ve Erdem, H. (2018). Biyokömür; Tanımı, Kullanımı ve Tarım Topraklarındaki Etkileri. ADÜ Ziraat Derg, 2018;15(2):87-93.
  • Jeffery, S., Abalos, D., Prodana, M., Bastos, A. C., Van Groenigen, J. W., Hungate, B. A.,… Verheijen, F. (2017). Biochar boosts tropical but not temperate crop yields. Environmental Research Letters, 12(5), 053001.
  • KHGM, (1997). Adıyaman Kâhta Ovası Sulama Proje Sahası Detaylı Toprak Etütleri, Köy Hizmetleri Genel Müdürlüğü Etüd ve Proje Dairesi Başkanlığı, Ankara, s. 250.
  • Kızılgöz, İ., Sakin, E., ve Gürsöz, S. (2011). Ovacık Köyü'nde (Şanlıurfa) Yetiştirilen Asma (Vitis vinifera L.) Çeşitlerinin Mineral Beslenme Durumunun Değerlendirilmesi. Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 25(1):1-10.
  • Knicker, H., Müller, P., ve Hilscher, A. (2007). How useful is chemical oxidation with dichromate for the determination of “Black Carbon” in fire-affected soils? Geoderma 142: 178–196. http://dx.doi.org/10.1016/j.geoderma.2007.08.010.
  • Krishnakumar, S., Rajalakshmi, A. G., Balaganesh, B., Manikandan, P., Vinoth, C., ve Rajendran, V. (2014). Impact of biochar on soil health. Int. J. Adv. Res, 2(4), 933-950.
  • Lehmann, J., da Silva, J. P., Steiner, C., Nehls, T., Zech, W., ve Glaser, B. (2003). Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant and soil, 249(2), 343-357.
  • Lehmann, J., ve Rondon, M. (2006). Bio-char soil management on highly weathered soils in the humid tropics. Biological approaches to sustainable soil systems, 113(517), e530.
  • Luo, L., ve Gu, J. D. (2016). Alteration of extracellular enzyme activity and microbial abundance by biochar addition: Implication for carbon sequestration in subtropical mangrove sediment. Journal of environmental management, 182, 29-36.
  • McBeath, A. V., Wurster, C. M., ve Bird, M. I. (2015). Influence of feedstock properties and pyrolysis conditions on biochar carbon stability as determined by hydrogen pyrolysis. Biomass and Bioenergy 73, 155–173. doi:10.1016/j. biombioe.2014.12.022.
  • Mohammed, I. Y., Abakr, Y. A., ve Mokaya, R. (2018). Valorisation of adzuki bean waste to biofuel precursors via pyrolysis: kinetics, product distribution and characterisation. Biomass Conversion and Biorefinery, 8(3), 699-710.
  • Namgay, T., Singh, B., ve Singh, B. P. (2010). Influence of biochar application to soil on the availability of As, Cd, Cu, Pb, and Zn to maize (Zea mays L.). Soil Research, 48(7), 638-647.
  • Ogawa, M., Okimori, Y., ve Takahashi, F. (2006). Carbon sequestration by carbonization of biomass and forestation: Three case studies. Mitigation and Adaptation Strategies for Global Change 11: 429–444
  • Özdemir, N., Gülser, C., Ekberli, İ., ve Özkaptan, S. (2005). Toprak düzenleyicilerinin asit toprakta strüktürel dayanıklılığa etkisi. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 36(2), 151-156.
  • Peng, X., Ye, L. L., Wang, C. H., Zhou, H., ve Sun, B. (2011). Temperature- and duration-dependent rice straw-derived biochar: characteristics and its effects on soil properties of an ultisol in southern china. Soil Till. Research, 112, 159–166.
  • Qin, X., Li, Y., Wang, H., Liu, C., Li, J., Wan, Y., … Liao, Y. (2016). Long-term effect of biochar application on yield-scaled greenhouse gas emissions in a rice paddy cropping system: a four-year case study in south China. Sci. Total Environ. 570: 1390–1401. http://dx.doi.org/10.1016/j.scitotenv.2016.06.222.
  • Richards, L. A. (1954). Diagnosis and improvements saline and alkali soils. U.S. Dept. Agr. Handbook, 60.
  • Taghizadeh-Toosi, A., Clough, T. J., Sherlock, R. R., ve Condron, L. M. (2012). Biochar adsorbed ammonia is bioavailable. Plant and soil, 350(1-2), 57-69.
  • Sakin, E., ve Yanardag, İ.H. (2019). Effect of Applıcatıon of Sheep Manure and its Bıochar on Carbon Emissions in Salt Affected Calcareous Soil in Sanlıurfa Regıon Se Turkey.  Fresenius Environmental Bulletin 28(4):2553-2560.
  • Sönmez, S., Kaplan, M., Sönmez, N. K., ve Kaya, H. (2006). Topraktan Yapılan Bakır Uygulamalarının Toprak pH’sı ve Bitki Besin Maddesi İçerikleri Üzerine Etkisi. Akdeniz Üniversitesi Ziraat Fakültesi Dergisi, 19(1), 151-158.
  • Steiner, C., Teixeira, W. G., Lehmann, J., Nehls, T., de Macêdo, J. L. V., Blum, W. E. H.,… Zech, W. (2007). Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered central Amazonian upland soil. Plant and Soil. 291, 275–290.
  • Tiftik, B. E. (2006). Çay Fabrikası Atığının Pirolizi ve Piroliz Ürünlerinin İncelenmesi Yüksek Lisans Tezi, Ankara Üniversitesi, Ankara, Türkiye.
  • Veiga, T. R. L. A., Lima, J. T., Dessimoni, A. L. D. A., Pego, M. F. F., Soares, J. R., ve Trugilho, P. F. (2017). Different Plant Biomass Characterizations for Biochar Production. Cerne, 23(4), 529-536.
  • Whalen, J. K., ve Chang, C. (2002). Macroaggregate characteristics fin cultivated soil after 25 annual manure applications. Soil Sci. Soc. Am. J., 66, 1637-1647.
  • Yu, X.Y., Ying, G. G., ve Kookana, R. S. (2006). Sorption and desorption behaviors of diuron in soils amended with charcoal. Journal of Agricultural and Food Chemistry, 54: 8545-8550.
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Toprak Bilimi ve Ekolojisi
Bölüm Araştırma Makaleleri
Yazarlar

Ahmet Çelik 0000-0001-8958-4978

Memet İnan Bu kişi benim 0000-0001-8870-5029

Erdal Sakin 0000-0001-5403-4247

Yayımlanma Tarihi 23 Aralık 2019
Gönderilme Tarihi 14 Mayıs 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 23 Sayı: 4

Kaynak Göster

APA Çelik, A., İnan, M., & Sakin, E. (2019). Toprağa Uygulanan Tütün ve Badem Atıklarından Elde Edilen Biyokömürlerin Elementel Analizleri ve SEM Özelliklerinin Karşılaştırılması. Harran Tarım Ve Gıda Bilimleri Dergisi, 23(4), 500-510. https://doi.org/10.29050/harranziraat.565323

Derginin Tarandığı İndeksler

13435  19617   22065  13436  134401344513449 13439 13464  22066   22069  13466 

10749 Harran Tarım ve Gıda Bilimi Dergisi, Creative Commons Atıf –Gayrı Ticari 4.0 Uluslararası (CC BY-NC 4.0) Lisansı ile lisanslanmıştır.