Araştırma Makalesi
BibTex RIS Kaynak Göster

Bazı endofitik ve rizosferik bakterilerin fasulyede Macrophomina phaseolina’ya karşı etkinliklerinin in vitro koşullarda belirlenmesi

Yıl 2023, Cilt: 27 Sayı: 1, 42 - 51, 24.03.2023
https://doi.org/10.29050/harranziraat.1195672

Öz

Macrophomina phaseolina (Tassi) Goid. geniş konukçu aralığına sahip toprak kökenli bir hastalık olup mücadelesi oldukça zordur. Bundan dolayı, çalışmamızda 2021 yılında Konya’nın Çumra ilçesinden alınan fasulye bitkilerinin farklı aksamlarından (çiçek, gövde, kök ve yaprak) ve topraktan elde edilen toplam 71 bakterinin hastalığa karşı in vitro etkinliklerinin belirlenmesi amaçlanmıştır. İkili kültür testlerinde %60 ve üzerinde etki gösteren bakteriler için bazı biyokimyasal testler (Hidrojen siyanid aktivitesi, fosforu çözme yeteneği, siderofor sentez kabiliyeti, indol asetik asit üretebilme yetenekleri ve ACC deaminaz aktivitelerinin belirlenmesi) uygulanmıştır. Deneme sonucunda değerlendirmeler yapılmış ve bu testler puanlandırılarak en yüksek etkiyi gösteren bakteriler daha sonraki çalışmalarda kullanılmak üzere seçilmiştir. Macrophomina phaseolina’ya karşı ikili kültür denemelerinde başarılı olan izolatlar; yapraktan izole edilen Bacillus pumilus DP 25 (%91), rizosferik Bacillus subtilis DP 143.6 (%86) ve rizosferik Bacillus cereus DP 145.1 (%100) olmuştur. Yüksek düzeyde etkili olan bu izolatların fosforu çözme kabiliyetleri, siderofor sentez yetenekleri ve indol asetik asit kabiliyetleri pozitif olarak belirlenmiştir.

Destekleyen Kurum

Selçuk Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü

Proje Numarası

21401059 nolu proje

Teşekkür

Bu çalışma, Selçuk Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü tarafından desteklenmiş olan 21401059 nolu proje kapsamında yapılmıştır.

Kaynakça

  • Akbaba, M. (2014). Bitki gelişimini artıran bakteriyel endofitlerin hıyar bakteriyel köşeli yaprak leke hastalığının (Pseudomonas syringae pv. lachrymans) önlenmesinde kullanılma olanakları. Ege Üniversitesi, Fen Bilimleri Enstitüsü, Bitki Koruma ana Bilim Dalı, Yüksek Lisans Tezi.
  • Aktan, Z.C. ve Soylu, S. (2020). Diyarbakır ilinde yetişen badem ağaçlarından endofit ve epifit bakteri türlerinin izolasyonu ve bitki gelişimini teşvik eden mekanizmalarının karakterizasyonu. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 23(3), 641-654.
  • Ambrosini, A. & Passaglia, L.M. (2017). Plant growth-promoting bacteria (PGPB): isolation and screening of PGP activities. Current Protocols iİn Plant Biology, 2(3), 190-209.
  • Atay, M., Kara, M., Uysal, A., Soylu, S., Kurt, Ş. & Soylu, E.M. (2020). In vitro antifungal activities of endophytic bacterial isolates against postharvest heart rot disease agent Alternaria alternata in pomegranate fruits. Acta Horticulturae, 1289, 309-314.
  • Babalola, O.O. (2010). Beneficial bacteria of agricultural importance. Biotechnol. Lett., 32, pp. 1559-1570.
  • Babier, Y. ve Akköprü, A. (2020). Çeşitli kültür bitkilerinden izole edilen endofitik bakterilerin karakterizasyonu ve bitki patojeni bakterilere karşı antagonistik etkilerinin belirlenmesi. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 30(3), 531-534.
  • Bahroun, A., Jousset, A., Mhamdi, R., Mrabet, M. & Mhadhbi, H. (2018). Anti-fungal activity of bacterial endophytes associated with legumes against Fusarium solani: assessment of fungi soil suppressiveness and plant protection induction. Applied soil ecology, 124, :131–140.
  • Bakker, A.W. & Schippers, B. (1987). Microbial cyanide production in the rhizosphere in relation and Pseudomonas spp-mediated plant growth-stimulation. Soil Biology and Biochemistry, 19, pp. 451-457.
  • Banat, I.M., Franzetti A., Gandolfi, I., Bestetti, G., Martinotti, M.G., Fracchia, L., … Marchant R. (2010). Microbial biosurfactants production, applications and future potential. Applied Microbiology and Biotechnology, 87, pp. 427-444.
  • Béchet M., Caradec T., Hussein W., Abderrahmani A., Chollet M., Leclère V., … Jacques, P. (2012). Structure, biosynthesis, and properties of kurstakins, nonribosomal lipopeptides from Bacillus spp. Applied Microbiology and Biotechnology, 95, pp. 593-600.
  • Bojorquez-Armenta, Y.D.J., Mora-Romero, G.A., Lopez-Meyer, M., Maldonado-Mendoza, I.E., Castro-Martinez, C., Romero-Urias, C.D.L.A. & Martinez-Alveraz, J.C. (2021). Evaluation of Bacillus spp. isolates as potential biocontrol agents against charcoal rot caused by Macrophomina phaseolina on common bean. Journal of General Plant Pathology, 87(6), 377-386.
  • Cawoy, H., Debois D., Franzil, L., De Pauw, E., Thonart, P. & Ongena, M. (2014). Lipopeptides as main ingredients for inhibition of fungal phytopathogens by Bacillus subtilis/amyloliquefaciens. Microbial Biotechnology, 8, pp. 281-295.
  • Chung, S., Kong, H., Buyer, J.S., Lakshman, D.K., Lydon, J. & Kim, S.D. (2008). Isolation and partial characterization of Bacillus subtilis ME488 for suppression of soilborne pathogens of cucumber and pepper. Applied Microbial Biotechnology, 80 (1), pp. 115-123.
  • Correa, B.O., Shafer, J.T. & Moura, A.B. (2014). Spectrum of biocontrol bacteria to control leaf, root and vascular diseases of dry bean. Biological. Control, 72, pp. 71-75.
  • El Arbi, A., Rochex, A., Chataign, G., Béchet, M., Lecouturier, D., Arnauld, S., … Jacques, P. (2016). The Tunisian oasis ecosystem is a source of antagonistic Bacillus spp. producing diverse antifungal lipopeptides. Research in Microbiology, 167, pp. 46-57.
  • Francis I., Holsters M. & Vereecke D. (2010). The Gram-positive side of plant–microbe interactions. Environ. Microbiol., 1, pp. 1-12.
  • Kara, M. & Soylu, S. (2022). Isolation of endophytic bacterial isolates from healthy banana trees and determination of their in vitro antagonistic activities against crown rot disease agent Fusarium verticillioides. Mustafa Kemal Üniversitesi Tarım Bilimleri Dergisi, 27(1), 36-46.
  • Kaushik, C.D., Chand J. & Saryavir, N. (1987). Seedborne nature of Rhizoctonia bataticola causing leaf blight of mung bean. Indian Journal of Mycology and Plant Pathology. 17, pp. 153–157.
  • Kaya Özdoğan, D. (2020). Ankara ili topraklarından bitki büyümesini teşvik edici bakterilerin izolasyonu, tanımlanması ve genetik çeşitliliklerinin belirlenmesi. Ankara Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi.
  • Keshavarz-Tohid, V., Taheri P., Muller, D., Prigent-Combaret, C., Vacheron, J., Taghavi, S.M. & Moënne-Loccoz, Y. (2017). Phylogenetic diversity and antagonistic traits of root and rhizosphere pseudomonads of bean from Iran for controlling Rhizoctonia solani. Research in Microbiology. 168, pp. 760–772.
  • Kumar P., Pandey P., Dubey R.C. & Maheshwari D.K. (2016). Bacteria consortium optimization improves nutrient uptake, nodulation, disease suppression and growth of the common bean (Phaseolus vulgaris) in both pot and field studies. Rhizosphere, 2, pp. 13-23.
  • Kumar, P., Dubey, R.C. & Maheshwari, D.K. (2012). Bacillus strains isolated from rhizosphere showed plant growth promoting and antagonistic activity against phytopathogens Microbiological Research, 167, pp. 493-499.
  • Li, B., Li, Q., Xu, Z., Zhang, N., Shen, Q. & Zhang, R. (2014). Response of beneficial Bacillus amyloliquefaciens SQR9 to different soilborne fungal pathogens through the alteration of antifungal compounds production. Front. Microbiol., 5, p. 636.
  • Marquez, N., Giachero, M.L., Declerck, S. & Ducasse, D.A. (2021). Macrophomina phaseolina general characteristics of pathogenicity and methods of control. Frontiers in Plant Science, 12, pp. 1-16. DOI: https://doi.org/10.3389/fpls.2021.634397.
  • Pikovskaya, R.I. (1948). Mobilization of Phosphorus in Soil Connection with the Vital Activity of Some Microbial Species. Microbiology, 17, 362-370.
  • Reznikov, S., De Lisi, V., Claps, P., González, V., Devani, M.R., … Castagnaro, A.P. (2019). Evaluation of the efficacy and application timing of different fungicides for management of soybean foliar diseases in northwestern Argentina. Crop Protection, 124, 104844. DOI: https://doi.org/10.1016/j.cropro.2019.104844.
  • Sabaté, D.C., Pérez Brandan, C., Petroselli, G., Erra Balsells, R. & Audisio, M.C. (2018). Biocontrol of Sclerotinia sclerotiorum (Lib.) de Bary on common bean by native lipopeptide-producer Bacillus strains. Microbiological Research, 211, pp. 21-30.
  • Sabaté Daniela C., Gabriela Petroselli, Rosa Erra-Balsells, M. Carina Audisio & Carolina Pérez Brandan. (2020). Beneficial effect of Bacillus sp. P12 on soil biological activities and pathogen control in common bean, Biological Control, 141, 104131., ISSN 1049-9644. DOI: https://doi.org/10.1016/j.biocontrol.2019.104131.
  • Schwartz H.F., Steadman J.R., Hall R. & Foster R.L. (2005). Compendium of Bean Diseases. (second ed.) p. 120.
  • Schwyn, B. & Neilands, J.B. (1987). Universal chemical assay for the detection and determination of siderophores. Anal Biochem., 160, pp. 47-56.
  • Sendi, Y., Pfeiffer, T., Koch, E., Mhadhi, H. & Mrabet, M. (2020). Potential of common bean (Phaseolus vulgaris L.) root microbiome in the biocontrol of root rot disease and traits of performance. Journal of Plant Diseases and Protection 127, pp. 453-462.
  • Siddiqui, I.A., Ehetshamul-Haque, S. & Shahid Shaukat, S. (2001). Use of rhizobacteriain the control of root rot-root knot disease complex of mungbean J. Phytopathol., 149, pp. 337-346.
  • Singh, N., Pandey, P., Dubey, R.C. & Maheshwari, D.K. (2008). Biological control of root rot fungus Macrophomina phaseolina and growth enhancement of Pinus roxburghii (Sarg.) by rhizosphere competent Bacillus subtilis BN1. World J. Microbiol. Biotechnol., 24, pp. 1669-1679.
  • Soylu, S., Kara, M., Soylu, E.M., Uysal, A. & Kurt, Ş. (2022). Geotrichum citri-aurantii’nin sebep olduğu turunçgil ekşi çürüklük hastalığının biyolojik mücadelesinde endofit bakterilerin biyokontrol potansiyellerinin belirlenmesi. Tekirdağ Ziraat Fakültesi Dergisi, 19, 177-191.
  • Soylu, S., Kara, M., Uysal, A., Kurt, Ş. & Soylu, E.M. (2021). Determination of antagonistic potential of endophytic bacteria isolated from lettuce against lettuce white mould disease caused by Sclerotinia sclerotiorum. Zemdirbyste-Agriculture, 108, 303-312.
  • Stein T. (2005). Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol Microbiol, 56 (4), pp. 845-857.
  • Tariq, M., Yasmin, S. & Hafeez, F.Y. (2010). Biological control of potato black scurf by rhizosphere associated bacteria. Brazilian Journal of Microbiology (2010) 41: 439-451.
  • Torres, M.J., Pérez, C., Brandan, D., Sabaté, C., Petroselli, G., Erra-Balsells, R. & Audisio, M.C. (2017). Biological activity of the lipopeptide-producing Bacillus amyloliquefaciens PGPBacCA1 on common bean Phaseolus vulgaris L. Pathogens. Biol. Control, 105, pp. 93-99.
  • Uysal, A., Kurt, Ş., Soylu, S., Soylu, E.M. & Kara, M. (2019). Yaprağı yenen sebzelerdeki mikroorganizma türlerinin MALDI-TOF MS (Matris Destekli Lazer Desorpsiyon/İyonizasyon Uçuş Süresi Kütle Spektrometresi) tekniği kullanılarak tanılanması. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 29, 595-603.
  • Vural, C. & Soylu, S. (2012). Prevalence and incidence of fungal disease agents affecting bean (Phaseolus vulgaris L.) plants. Research on Crops, 13, 634-640.

In vitro determination of efficacies of some endophytic and rhizospheric bacteria against Macrophomina phaseolina in beans

Yıl 2023, Cilt: 27 Sayı: 1, 42 - 51, 24.03.2023
https://doi.org/10.29050/harranziraat.1195672

Öz

Macrophomina phaseolina (Tassi) Goid is a soil-borne disease with a wide host range and is very difficult to control. In our study, a total of 71 bacteria were obtained from different parts (flower, stem, root and leaf) of bean plants and soil taken from Çumra district of Konya in 2021 and in vitro efficacies of bacteria against disease were determined. Some biochemical tests (hydrogen cyanide activity, phosphorus solubilization ability, siderophore synthesis ability, indole acetic acid production ability and determination of ACC deaminase activities) were applied for bacteria that had an effect of 60% or more in double culture tests. At the end of the experiment, we were evaluated our data and these tests were scored and the bacteria showing the highest effect were selected for use in further studies. Isolates that were successful in dual culture tests against Macrophomina phaseolina were Bacillus pumilus DP 25 (91%), rhizospheric Bacillus subtilis DP 143.6 (86%), and rhizospheric Bacillus cereus DP 145.1 (%100) isolated from leaves. Phosphorus solubility, siderophore synthesis abilities and indole acetic acid abilities of these highly effective isolates were determined as positive.

Proje Numarası

21401059 nolu proje

Kaynakça

  • Akbaba, M. (2014). Bitki gelişimini artıran bakteriyel endofitlerin hıyar bakteriyel köşeli yaprak leke hastalığının (Pseudomonas syringae pv. lachrymans) önlenmesinde kullanılma olanakları. Ege Üniversitesi, Fen Bilimleri Enstitüsü, Bitki Koruma ana Bilim Dalı, Yüksek Lisans Tezi.
  • Aktan, Z.C. ve Soylu, S. (2020). Diyarbakır ilinde yetişen badem ağaçlarından endofit ve epifit bakteri türlerinin izolasyonu ve bitki gelişimini teşvik eden mekanizmalarının karakterizasyonu. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 23(3), 641-654.
  • Ambrosini, A. & Passaglia, L.M. (2017). Plant growth-promoting bacteria (PGPB): isolation and screening of PGP activities. Current Protocols iİn Plant Biology, 2(3), 190-209.
  • Atay, M., Kara, M., Uysal, A., Soylu, S., Kurt, Ş. & Soylu, E.M. (2020). In vitro antifungal activities of endophytic bacterial isolates against postharvest heart rot disease agent Alternaria alternata in pomegranate fruits. Acta Horticulturae, 1289, 309-314.
  • Babalola, O.O. (2010). Beneficial bacteria of agricultural importance. Biotechnol. Lett., 32, pp. 1559-1570.
  • Babier, Y. ve Akköprü, A. (2020). Çeşitli kültür bitkilerinden izole edilen endofitik bakterilerin karakterizasyonu ve bitki patojeni bakterilere karşı antagonistik etkilerinin belirlenmesi. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 30(3), 531-534.
  • Bahroun, A., Jousset, A., Mhamdi, R., Mrabet, M. & Mhadhbi, H. (2018). Anti-fungal activity of bacterial endophytes associated with legumes against Fusarium solani: assessment of fungi soil suppressiveness and plant protection induction. Applied soil ecology, 124, :131–140.
  • Bakker, A.W. & Schippers, B. (1987). Microbial cyanide production in the rhizosphere in relation and Pseudomonas spp-mediated plant growth-stimulation. Soil Biology and Biochemistry, 19, pp. 451-457.
  • Banat, I.M., Franzetti A., Gandolfi, I., Bestetti, G., Martinotti, M.G., Fracchia, L., … Marchant R. (2010). Microbial biosurfactants production, applications and future potential. Applied Microbiology and Biotechnology, 87, pp. 427-444.
  • Béchet M., Caradec T., Hussein W., Abderrahmani A., Chollet M., Leclère V., … Jacques, P. (2012). Structure, biosynthesis, and properties of kurstakins, nonribosomal lipopeptides from Bacillus spp. Applied Microbiology and Biotechnology, 95, pp. 593-600.
  • Bojorquez-Armenta, Y.D.J., Mora-Romero, G.A., Lopez-Meyer, M., Maldonado-Mendoza, I.E., Castro-Martinez, C., Romero-Urias, C.D.L.A. & Martinez-Alveraz, J.C. (2021). Evaluation of Bacillus spp. isolates as potential biocontrol agents against charcoal rot caused by Macrophomina phaseolina on common bean. Journal of General Plant Pathology, 87(6), 377-386.
  • Cawoy, H., Debois D., Franzil, L., De Pauw, E., Thonart, P. & Ongena, M. (2014). Lipopeptides as main ingredients for inhibition of fungal phytopathogens by Bacillus subtilis/amyloliquefaciens. Microbial Biotechnology, 8, pp. 281-295.
  • Chung, S., Kong, H., Buyer, J.S., Lakshman, D.K., Lydon, J. & Kim, S.D. (2008). Isolation and partial characterization of Bacillus subtilis ME488 for suppression of soilborne pathogens of cucumber and pepper. Applied Microbial Biotechnology, 80 (1), pp. 115-123.
  • Correa, B.O., Shafer, J.T. & Moura, A.B. (2014). Spectrum of biocontrol bacteria to control leaf, root and vascular diseases of dry bean. Biological. Control, 72, pp. 71-75.
  • El Arbi, A., Rochex, A., Chataign, G., Béchet, M., Lecouturier, D., Arnauld, S., … Jacques, P. (2016). The Tunisian oasis ecosystem is a source of antagonistic Bacillus spp. producing diverse antifungal lipopeptides. Research in Microbiology, 167, pp. 46-57.
  • Francis I., Holsters M. & Vereecke D. (2010). The Gram-positive side of plant–microbe interactions. Environ. Microbiol., 1, pp. 1-12.
  • Kara, M. & Soylu, S. (2022). Isolation of endophytic bacterial isolates from healthy banana trees and determination of their in vitro antagonistic activities against crown rot disease agent Fusarium verticillioides. Mustafa Kemal Üniversitesi Tarım Bilimleri Dergisi, 27(1), 36-46.
  • Kaushik, C.D., Chand J. & Saryavir, N. (1987). Seedborne nature of Rhizoctonia bataticola causing leaf blight of mung bean. Indian Journal of Mycology and Plant Pathology. 17, pp. 153–157.
  • Kaya Özdoğan, D. (2020). Ankara ili topraklarından bitki büyümesini teşvik edici bakterilerin izolasyonu, tanımlanması ve genetik çeşitliliklerinin belirlenmesi. Ankara Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi.
  • Keshavarz-Tohid, V., Taheri P., Muller, D., Prigent-Combaret, C., Vacheron, J., Taghavi, S.M. & Moënne-Loccoz, Y. (2017). Phylogenetic diversity and antagonistic traits of root and rhizosphere pseudomonads of bean from Iran for controlling Rhizoctonia solani. Research in Microbiology. 168, pp. 760–772.
  • Kumar P., Pandey P., Dubey R.C. & Maheshwari D.K. (2016). Bacteria consortium optimization improves nutrient uptake, nodulation, disease suppression and growth of the common bean (Phaseolus vulgaris) in both pot and field studies. Rhizosphere, 2, pp. 13-23.
  • Kumar, P., Dubey, R.C. & Maheshwari, D.K. (2012). Bacillus strains isolated from rhizosphere showed plant growth promoting and antagonistic activity against phytopathogens Microbiological Research, 167, pp. 493-499.
  • Li, B., Li, Q., Xu, Z., Zhang, N., Shen, Q. & Zhang, R. (2014). Response of beneficial Bacillus amyloliquefaciens SQR9 to different soilborne fungal pathogens through the alteration of antifungal compounds production. Front. Microbiol., 5, p. 636.
  • Marquez, N., Giachero, M.L., Declerck, S. & Ducasse, D.A. (2021). Macrophomina phaseolina general characteristics of pathogenicity and methods of control. Frontiers in Plant Science, 12, pp. 1-16. DOI: https://doi.org/10.3389/fpls.2021.634397.
  • Pikovskaya, R.I. (1948). Mobilization of Phosphorus in Soil Connection with the Vital Activity of Some Microbial Species. Microbiology, 17, 362-370.
  • Reznikov, S., De Lisi, V., Claps, P., González, V., Devani, M.R., … Castagnaro, A.P. (2019). Evaluation of the efficacy and application timing of different fungicides for management of soybean foliar diseases in northwestern Argentina. Crop Protection, 124, 104844. DOI: https://doi.org/10.1016/j.cropro.2019.104844.
  • Sabaté, D.C., Pérez Brandan, C., Petroselli, G., Erra Balsells, R. & Audisio, M.C. (2018). Biocontrol of Sclerotinia sclerotiorum (Lib.) de Bary on common bean by native lipopeptide-producer Bacillus strains. Microbiological Research, 211, pp. 21-30.
  • Sabaté Daniela C., Gabriela Petroselli, Rosa Erra-Balsells, M. Carina Audisio & Carolina Pérez Brandan. (2020). Beneficial effect of Bacillus sp. P12 on soil biological activities and pathogen control in common bean, Biological Control, 141, 104131., ISSN 1049-9644. DOI: https://doi.org/10.1016/j.biocontrol.2019.104131.
  • Schwartz H.F., Steadman J.R., Hall R. & Foster R.L. (2005). Compendium of Bean Diseases. (second ed.) p. 120.
  • Schwyn, B. & Neilands, J.B. (1987). Universal chemical assay for the detection and determination of siderophores. Anal Biochem., 160, pp. 47-56.
  • Sendi, Y., Pfeiffer, T., Koch, E., Mhadhi, H. & Mrabet, M. (2020). Potential of common bean (Phaseolus vulgaris L.) root microbiome in the biocontrol of root rot disease and traits of performance. Journal of Plant Diseases and Protection 127, pp. 453-462.
  • Siddiqui, I.A., Ehetshamul-Haque, S. & Shahid Shaukat, S. (2001). Use of rhizobacteriain the control of root rot-root knot disease complex of mungbean J. Phytopathol., 149, pp. 337-346.
  • Singh, N., Pandey, P., Dubey, R.C. & Maheshwari, D.K. (2008). Biological control of root rot fungus Macrophomina phaseolina and growth enhancement of Pinus roxburghii (Sarg.) by rhizosphere competent Bacillus subtilis BN1. World J. Microbiol. Biotechnol., 24, pp. 1669-1679.
  • Soylu, S., Kara, M., Soylu, E.M., Uysal, A. & Kurt, Ş. (2022). Geotrichum citri-aurantii’nin sebep olduğu turunçgil ekşi çürüklük hastalığının biyolojik mücadelesinde endofit bakterilerin biyokontrol potansiyellerinin belirlenmesi. Tekirdağ Ziraat Fakültesi Dergisi, 19, 177-191.
  • Soylu, S., Kara, M., Uysal, A., Kurt, Ş. & Soylu, E.M. (2021). Determination of antagonistic potential of endophytic bacteria isolated from lettuce against lettuce white mould disease caused by Sclerotinia sclerotiorum. Zemdirbyste-Agriculture, 108, 303-312.
  • Stein T. (2005). Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol Microbiol, 56 (4), pp. 845-857.
  • Tariq, M., Yasmin, S. & Hafeez, F.Y. (2010). Biological control of potato black scurf by rhizosphere associated bacteria. Brazilian Journal of Microbiology (2010) 41: 439-451.
  • Torres, M.J., Pérez, C., Brandan, D., Sabaté, C., Petroselli, G., Erra-Balsells, R. & Audisio, M.C. (2017). Biological activity of the lipopeptide-producing Bacillus amyloliquefaciens PGPBacCA1 on common bean Phaseolus vulgaris L. Pathogens. Biol. Control, 105, pp. 93-99.
  • Uysal, A., Kurt, Ş., Soylu, S., Soylu, E.M. & Kara, M. (2019). Yaprağı yenen sebzelerdeki mikroorganizma türlerinin MALDI-TOF MS (Matris Destekli Lazer Desorpsiyon/İyonizasyon Uçuş Süresi Kütle Spektrometresi) tekniği kullanılarak tanılanması. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 29, 595-603.
  • Vural, C. & Soylu, S. (2012). Prevalence and incidence of fungal disease agents affecting bean (Phaseolus vulgaris L.) plants. Research on Crops, 13, 634-640.
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Ziraat Mühendisliği
Bölüm Araştırma Makaleleri
Yazarlar

Raziye Koçak 0000-0002-8221-0452

Özden Salman 0000-0002-7871-4105

Proje Numarası 21401059 nolu proje
Yayımlanma Tarihi 24 Mart 2023
Gönderilme Tarihi 27 Ekim 2022
Yayımlandığı Sayı Yıl 2023 Cilt: 27 Sayı: 1

Kaynak Göster

APA Koçak, R., & Salman, Ö. (2023). Bazı endofitik ve rizosferik bakterilerin fasulyede Macrophomina phaseolina’ya karşı etkinliklerinin in vitro koşullarda belirlenmesi. Harran Tarım Ve Gıda Bilimleri Dergisi, 27(1), 42-51. https://doi.org/10.29050/harranziraat.1195672

Derginin Tarandığı İndeksler

13435  19617   22065  13436  134401344513449 13439 13464  22066   22069  13466 

10749 Harran Tarım ve Gıda Bilimi Dergisi, Creative Commons Atıf –Gayrı Ticari 4.0 Uluslararası (CC BY-NC 4.0) Lisansı ile lisanslanmıştır.