Araştırma Makalesi
BibTex RIS Kaynak Göster

The effect of plant growth regulator bacteria on micro propagation of grapevine rootstock with three different rooting abilities

Yıl 2024, Cilt: 28 Sayı: 1, 1 - 10, 25.03.2024
https://doi.org/10.29050/harranziraat.1374440

Öz

In the study, 3 American rootstocks (110 R, 1103 P and 5 BB) with low, medium, and high rooting ability were used, 2 different bacterial isolates Bacillus cereus (ZE-7) and Pseudomonas putida (ZE-12) and their binary combination and the bottom of the cuttings. It was aimed to determine the effect of bacteria on rooting by treating the rooting part. During the rooting stage, hormone-free MS medium was treated with PGPRs, and in addition, hormone-free MS medium containing 1 mgl-1 IBA was used to determine the effects of PGPRs strains. At the end of the study, the root ratio of the explants was maintained; root length, number of roots, root fresh weight, root dry weight, shoot length, shoot fresh weight, and shoot dry weight data were examined. It was determined that PGPR applications generally gave higher values than control and IBA applications. Among the rootstocks, it was determined that they gave the best results in terms of root development. The highest values were obtained in the 5BB rootstock, and the lowest values were generally obtained in the 110R rootstock. Shoot development values varied according to the rootstocks and applications. In terms of the effects of the applications on root development, the highest rooting rate was 72.03%, the highest root number ratio was 1.95 on average, and the highest root fresh weight was 39.75 mg from the Bacillus Cereus application; Additionally, the highest root dry weight was obtained from B.cereus+P.putida application with 13.06 mg. The research highlighted this feature of 5 BB rootstock, which is considered among the easily rooting rootstocks, with its PGPR effect. 110 R, which is known as a difficult rooting rootstock and has high resistance to drought and active lime, which are the biggest threats today, showed a lower rooting rate, but when the values were examined, it was above the control and IBA applications.

Kaynakça

  • Algül, B. E., Tekintaş, F. E., & Dalkılıç, G. (2016). The Usage of Plant Growth Regulators and Hormone Biosynthesis Booster Applications. Journal of Adnan Menderes University Agricultural Faculty 2016; 13(2):87-95. DOI: https://doi.org/10.25308/aduziraat.294100
  • Amarouchi, Z., Esmaeel, Q., Sanchez, L., Jacquard, C., Hafidi, M., Vaillant-Gaveau, N., & Ait Barka, E. (2021). Beneficial microorganisms to control the gray mold of grapevine: from screening to mechanisms. Microorganisms 9:1386. DOI: . https://doi.org/10.3390/ microorganisms9071386
  • Anonymous (2023). https://www.plantgrape.fr/en/varieties/rootstock-varieties/21
  • Antonopoulou, C., Dimassi, K., Therios, I., Chatzissavvidis, C., & Tsirakoglou, V. (2005). Inhibitory effect of riboflavin (Vitamin B2) on the in vitro rooting and nutrient concentration of explants of peach rootstock GF 677 (Prunus amygdalusx P. persica), Scientia Horticulturae 106, 268-272. DOI: https://doi.org/10.1016/j.scienta.2005.02.019
  • Barka, E. A., Belarbi, A., Hachet, Nowak, C. J., & Audran, J. C. (2000). Enhancement of in vitro growth and resistance to grey mould of Vitis vinifera co-cultured with plant growth-promoting rhizobacteria. FEMS Microbiol. Lett. 186: 91-95. DOI: https://doi.org/10.1111/j.1574-6968.2000.tb09087.x
  • Berg, G., Alavi, M., Schmidt, C., Zachow, C., Egamberdieva, D., Kamilova, B., & Lugtenberg, B. J. J. (2013) Biocontrol and osmoprotection for plants under salinated conditions. Molecular Microbial Ecology of the Rhizosphere (de Bruijn FJ, ed), pp. 587–592. John Wiley & Sons, Inc., Hoboken, NJ. DOI: https://doi.org/10.1002/9781118297674.ch55
  • Blazina, I., Korosec-Koruza, Z., Ravinkar, M., & Gogala, N. (1991). Regeneration and micropropagation of the grapevine (Vitis vinifera L.' zelen ') from shoot tip meristem. Acta Horticulturae, 300: 123-126.
  • Burns, J. A., & Schwarz, O. J. (1996) Bacterial stimulation of adventitious rooting on in vitro cultured slash pine (Pinus elliottii Engelm.) seedling explants. Plant Cell Rep 15:405–408. DOI: 10.1007/BF00232064
  • Carletti, S. M., Llorente, B., Rodríguez C´aceres, E., & Tandecarz, J. (1998) Jojoba inoculation with Azospirillum brasilense stimulates in vitro root formation. Plant Tissue Cult Biotech 4:165–174
  • Chen, C., Zhang, X., Wei, X., Zhu, Y., Chen, W., & Han, Y. (2022). Postharvest biological control of Botrytis cinerea and the mechanisms underlying the induction of disease resistance in grapes by Lactobacillus plantarum CM-3. Biological Control 172 (Art. 104982) 15 pp., 2022. DOI: https://doi.org/10.1016/j.biocontrol.2022.104982
  • Cleyet-Marcel, J.C., Larcher, M., Bertrand, H., Rapior S., & Pinochet, X. (2001). Plant growth enhancement by rhizobacteria. In: MorotGaudry, J.-F. (Ed.), Nitrogen Assimilation by Plants: Physiological, Biochemical, and Molecular Aspects. Science Publishers Inc., Plymouth, UK, pp. 185–197.
  • Çelik, S. (2011). Bağcılık (Ampeloloji). Namık Kemal Üniversitesi, Ziraat Fakültesi, Bahçe Bitkileri Bölümü, Cilt 1, 3. Baskı, Tekirdağ.
  • De Klerk, G. J., Ter Brugge, J., & Marinova, S. (1997). Effectiveness of indoleaceticacid, indolebutyric acid and naphthaleneacetic acid during adventitious root formation in vitro in Malus ‘Jork 9’, Plant Cell Tissue and Organ Culture, 49,39-44.
  • Di Marco, S., & Osti, F. (2007). Effects of Trichoderma applications on vines grown in organic nursery IFOAM Organic World Congress, Modena, Italy, June 16-20, 2008.
  • Ercişli, S., Eşitken, A., Cangi, R., & Şahin, F. (2003). Adventitious root formation of kiwifruit in relation to sampling date, IBA and Agrobacterium rubi inoculation. Plant Growth Regulation 41: 133-137.
  • Eşitken, A., Ercişli, S., Şevik, İ., & Şahin, F. (2003). Effect of ındole-3- butyric acid and different strains of Agrobacterium rubi on adventitive root formation from softwood and semi-hardwood wild sour cherry cuttings. Turk J Agric For 27, 37-42 Tubitak.
  • Eşitken, A., Karlidag, H., Ercisli, S., Turan, M., & Sahin, F. (2003). The effect of spraying a growth promoting bacterium on the yield, growth and nutrient element composition of leaves of apricot (Prunus armeniaca L. cv. Hacihaliloglu). Aust J Agr Res 54: 377–380.
  • Ferreira, G. M., Moreira, R. R., Jarek, T. M., Nesi, C. N., Biasi, L. A., & Mio, L. L. M. (2022). Alternative control of downy mildew and grapevine leaf spot on Vitis labrusca. Australasian Plant Pathology 51 (2) 193-201, 2022. DOI: https://doi.org/10.1007/s13313-021-00836-7
  • Frommel, M. I., Nowak, J., & Lazarovits, G. (1991). Growth enhancement and developmental modifications of in vitro grown potato (Solanum tuberosum ssp. tuberosum) as affected by a nonfluorescent Pseudomonas sp Plant Physiol., 96 (1991), pp. 928-936
  • Figiel-Kroczyńska, M., Krupa-Małkiewicz, M., & Ochmian, I. (2022). Efficient micropropagation protocol of three cultivars of highbush blueberry (Vaccinium corymbosum L.). Not Bot Horti Agrobo 50(4):12856. DOI:10.15835/nbha50412856
  • Fu, L., Cai, R., Feng, Z., Song, X., Zhu, Y., & Shi, F. (2022). Screening of biocontrol Bacillus spp. and its suppression efficacy on grape gray mold. Chinese Journal of Biological Control 38 (2) 440-446, DOI: 10.16409/j.cnki.2095-039x.2022.02.016
  • Glick, B. R. (1995). The enhancement of plant growth by free-living bacteria. Can. J. Microbiol. 41, 109–117. DOI: https://doi.org/10.1139/m95-015
  • Goto, M. (1990). Fundamentals of Bacterial Plant Pathology, Academic Press. Inc. San
  • Gökbayrak, Z. (2006). Troublesome Pest of Viticulture: Phylloxera. Alatarım 2006, 5, 37–43.
  • Granett, J., Walker, M., Kocsis, L., & Omer, A. D. (2001). Biology and Management of Grape Phylloxera. Annual Review of Entomology 46:387-412.
  • Howell, G. S., (1987). Vitis Rootstocks. In: Rom, R. C., Carlson, R. F. (Eds.), Rootstocks for Fruit Crops, A Wiley P Inter Sciece Publication, John Wiley and Sons, NewYork, Inc, p 451–472
  • Khalid, A., Arshad, M., &Zahir, Z. A. (2004). Screening plant growth-promoting rhizobacteria for improving growth and yield of wheat, Journal of Applied Microbiology, 96, 473-480. DOI: https://doi.org/10.1046/j.1365-2672.2003.02161.x
  • Kloepper, J. W. (1994). Plant growth-promoting rhizobacteria. In: Okon, Y. (Ed.), Azospirillum/Plant Associations. CRC Press, Boca Raton, FL, pp. 137–166.
  • Korkutal, I., Bahar, E., & Gunes, N. (2017). Different doses effects of Trichoderma harzianum and Bacillus subtilis on cv. Syrah: I. young plants performance during growing period in organic viticulture. 2nd International Balkan Agriculture Congress, Tekirdag, Turkey, 16-18 May 2017, pp. 650-657
  • Köse, C., Güleryüz, M., Şahin, F., & Demirtaş, İ. (2005). Effects of some plant growth promoting rhizobacteria (PGPR) on graft union of grapevine. J Sustain Agric. 26(2): 139-147. DOI: https://doi.org/10.1300/J064v26n02_10
  • Larraburu, E. E., Carletti, S. M., Rodríguez Cáceres, E. A., & Llorente, B. E. (2007). Micropropagation of photinia employing rhizobacteria to promote root development, Plant Cell Reports, 26 (6), 711-717. DOI: 10.1007/s00299-006-0279-2
  • Mahmood, M. N. (2015). Effect of different doses of biofungicides on growth characteristics of Merlot vines grafted on to 110R rootstock. Namık Kemal University, Graduate School of Natural and Applied Sciences, Tekirdağ. 146s.
  • Mendes, R., Garbeva, P., & Raaijmakers, J. M. (2013). The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol. Rev. 37, 634–663. DOI: https://doi.org/10.1111/1574-6976.12028
  • Murashige, T., & Skoog, F. A. (1962). A Revised medium for Rapid Growth and Bioassays with Tobacco Tissue Cultures. Physiol. Plant. 15, pp. 473-497.
  • Nowak, J., Asiedu, S. K., Bensalim, S., Richards, J., Stewart, A., Smith, C., Stevens, D. and Sturz, A. V. (1998) From laboratory to applications: challenges and progress with in vitro dual cultures of potato and beneficial bacteria. Plant Cell Tissue Organ Cult. 52, 97-103. DOI: 10.1007/978-94-015-8951-2_39
  • Ostroukhova ,E., Peskova, I., Levchenko, S., Vyugina, M., Belash, D., & Shadura, N. (2022). The use of a microbiological preparation based on Bacillus subtilis in organic viticulture Source: BIO Web of Conferences 48 (Art. 02006) 8 pp., 2022. DOI:10.1051/bioconf/20224802006
  • Patena, L., Sutter, E. G., & Dandekar, A. M. (1988). Root induction by Agrobacterium rhizogenes in a difficult to root woody species. Acta Horticulturae 227: 324-329. DOI: 10.17660/ActaHortic.1988.227.59
  • Pedrotti, E. L., Jay-Allemand, C., Doumas, P., & Cornu, D. (1994). Effect of autoclaving amino acids on in vitro rooting response of wildcherry shoot. Scientia Horticulturae 57 (1): 89-98. DOI: https://doi.org/10.1016/0304-4238(94)90037-X
  • Peyvandi, M., Farahani, F., Mazinani, M. H., Noormohamadi, Z., Ataii, S., & Asgharzade, A. (2010). Pseudomonas fluorescent and its ability to promote root formation of olive micro shoots. International Journal of Plant Production 4 (1)
  • Sabir, A. (2013). Improvement of grafting efficiency in hard grafting grape Berlandieri hybrid rootstocks by plant growth-promoting rhizobacteria (PGPR). Scientia Horticulturae (Amsterdam), 164, 24–29. DOI: https://doi.org/10.1016/j.scienta.2013.08.035.
  • Sabir, A., Yazici, M. A., Kara, Z., & Şahin, F. (2012). Growth and mineral acquisition response of grapevine rootstocks (Vitis spp.) to inoculation with different strains of plant growth-promoting rhizobacteria (PGPR). J Sci Food and Agric 92(10): 2148-2153. DOI: https://doi.org/10.1002/jsfa.5600
  • Sharma, V., Kamal, B., Srivastava, N., Negi, Y., Dobriyal, A. K., & Jadon, V. S., (2014). Enhancement of in vitro growth of Swertia chirayita Roxb. Ex Fleming cocultured with plant growth promoting rhizobacteria, Plant Cell Tiss Organ Cult. 121, pages215–225 (2015). DOI: 10.1007/s11240-014-0696-9
  • Sivritepe, N. (1995). Researches on salt resistance tests and some factors affecting salt resistance in grapevines. Uludağ University Graduate School of Natural and Applied Sciences Department of Horticulture (PhD thesis), Bursa, 176 s.
  • Srinivasan, M., Holl, F. B., & Petersen, D. J. (1996). Influence of indoleacetic-acid-producing Bacillus isolates on the nodulation of Phaseolus vulgaris by Rhizobium etli under gno to biotic conditions, Canadian Journal of Microbiology 42 (10): 1006-1014. DOI: https://doi.org/10.1139/m96-129
  • Steenhoudt, O., & Vanderleyden, J. (2000). Azospirillum, a free-living nitrogen- fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspect, FEMS Microbiology Reviews, 24, 487-506. DOI: https://doi.org/10.1111/j.1574-6976.2000.tb00552.x
  • Teixeira, D. A., Alfenas, A. C., Mafia, R. G., Ferreira, E. M., De Siqueira, L., Maffia, L. A., & Mounteer, A. H. (2007). Rhizobacterial promotion of eucalypt rooting and growth. Brazilian Journal of Microbiology 38: 118-123. DOI: https://doi.org/10.1590/S1517-83822007000100025
  • Tripp, K. E., & Stomp, A. M. (1997). Horticultural applications of Agrobacterium rhizogenes (hairy-root): enhanced rooting of difficult to root woody plants. Combined Proceedings of the International Plant Propagators’ Society 47: 527-535.
  • Yağcı, A. (2022). Bağcılık (Lecture notes). https://antalya.tarimorman.gov.tr/Belgeler/bagcilik.pdf (date of access: 12.02.2023)

Farklı köklenme yeteneğine sahip asma anaçlarının mikro çoğaltılmasına bitki gelişimini düzenleyici bakterilerin etkisi

Yıl 2024, Cilt: 28 Sayı: 1, 1 - 10, 25.03.2024
https://doi.org/10.29050/harranziraat.1374440

Öz

Çalışmada köklenme yeteneği düşük, orta ve yüksek olan 3 Amerikan anacını (110 R, 1103 P ve 5 BB ), 2 farklı bakteri izolatı (Bacillus cereus (ZE-7) ve Pseudomonas putida (ZE-12) ve bunların ikili kombinasyonu ile çeliklerin dip kısmını muamele etmek suretiyle bakterilerin köklenme üzerinde etkisini belirlemek amaçlanmıştır. Köklendirme aşamasında hormondan ari MS ortamı, BBAR’lar ile muamele edilmiş olup ayrıca, BBAR ırklarının etkilerini belirleyebilmek için hormondan ari 1 mgl-1 IBA içeren MS ortamları kullanılmıştır. Çalışma sonunda sürdürülen eksplantların kök oranı, kök uzunluğu, kök sayısı, kök yaş ağırlığı, kök kuru ağırlığı, sürgün uzunluğu, sürgün yaş ağırlığı ve sürgün kuru ağırlığı verileri incelenmiştir. BBAR uygulamalarının, genel olarak kontrol ve IBA uygulamalarına oranla daha yüksek değerler verdiği saptanmıştır. Anaçlar arasında kök gelişimi bakımından en yüksek değerler 5BB anacında, en düşük değerler ise genel olarak 110R anacında elde edilmiştir. Sürgün gelişim değerleri anaçlara ve uygulamalara göre değişiklikler göstermiştir. Uygulamaların kök gelişimleri üzerine etkileri açısından en yüksek Bacillus cereus uygulamasından en yüksek köklenme %72.03, en yüksek kök sayısı oranı ortalama 1.95 adet ile en yüksek kök yaş ağırlığı 39.75 mg elde edilmiştir; ayrıca en yüksek kök kuru ağırlığı da 13.06 mg ile B.cereus+P.putida uygulamasından alınmıştır. Araştırma kolay köklenen anaçlar arasında değerlendirilen 5 BB anacının, BBAR etkisi ile bu özelliğini daha çok ön plana çıkmıştır. Zor köklenen anaç olarak bilinen, günümüzdeki en büyük tehdit olan kuraklık ve aktif kireçe dayanımı yüksek olan 110 R ise daha düşük bir köklenme göstermiştir, fakat değerler incelendiğinde kontrol ve IBA uygulamalarının üstünde olmuştur.

Kaynakça

  • Algül, B. E., Tekintaş, F. E., & Dalkılıç, G. (2016). The Usage of Plant Growth Regulators and Hormone Biosynthesis Booster Applications. Journal of Adnan Menderes University Agricultural Faculty 2016; 13(2):87-95. DOI: https://doi.org/10.25308/aduziraat.294100
  • Amarouchi, Z., Esmaeel, Q., Sanchez, L., Jacquard, C., Hafidi, M., Vaillant-Gaveau, N., & Ait Barka, E. (2021). Beneficial microorganisms to control the gray mold of grapevine: from screening to mechanisms. Microorganisms 9:1386. DOI: . https://doi.org/10.3390/ microorganisms9071386
  • Anonymous (2023). https://www.plantgrape.fr/en/varieties/rootstock-varieties/21
  • Antonopoulou, C., Dimassi, K., Therios, I., Chatzissavvidis, C., & Tsirakoglou, V. (2005). Inhibitory effect of riboflavin (Vitamin B2) on the in vitro rooting and nutrient concentration of explants of peach rootstock GF 677 (Prunus amygdalusx P. persica), Scientia Horticulturae 106, 268-272. DOI: https://doi.org/10.1016/j.scienta.2005.02.019
  • Barka, E. A., Belarbi, A., Hachet, Nowak, C. J., & Audran, J. C. (2000). Enhancement of in vitro growth and resistance to grey mould of Vitis vinifera co-cultured with plant growth-promoting rhizobacteria. FEMS Microbiol. Lett. 186: 91-95. DOI: https://doi.org/10.1111/j.1574-6968.2000.tb09087.x
  • Berg, G., Alavi, M., Schmidt, C., Zachow, C., Egamberdieva, D., Kamilova, B., & Lugtenberg, B. J. J. (2013) Biocontrol and osmoprotection for plants under salinated conditions. Molecular Microbial Ecology of the Rhizosphere (de Bruijn FJ, ed), pp. 587–592. John Wiley & Sons, Inc., Hoboken, NJ. DOI: https://doi.org/10.1002/9781118297674.ch55
  • Blazina, I., Korosec-Koruza, Z., Ravinkar, M., & Gogala, N. (1991). Regeneration and micropropagation of the grapevine (Vitis vinifera L.' zelen ') from shoot tip meristem. Acta Horticulturae, 300: 123-126.
  • Burns, J. A., & Schwarz, O. J. (1996) Bacterial stimulation of adventitious rooting on in vitro cultured slash pine (Pinus elliottii Engelm.) seedling explants. Plant Cell Rep 15:405–408. DOI: 10.1007/BF00232064
  • Carletti, S. M., Llorente, B., Rodríguez C´aceres, E., & Tandecarz, J. (1998) Jojoba inoculation with Azospirillum brasilense stimulates in vitro root formation. Plant Tissue Cult Biotech 4:165–174
  • Chen, C., Zhang, X., Wei, X., Zhu, Y., Chen, W., & Han, Y. (2022). Postharvest biological control of Botrytis cinerea and the mechanisms underlying the induction of disease resistance in grapes by Lactobacillus plantarum CM-3. Biological Control 172 (Art. 104982) 15 pp., 2022. DOI: https://doi.org/10.1016/j.biocontrol.2022.104982
  • Cleyet-Marcel, J.C., Larcher, M., Bertrand, H., Rapior S., & Pinochet, X. (2001). Plant growth enhancement by rhizobacteria. In: MorotGaudry, J.-F. (Ed.), Nitrogen Assimilation by Plants: Physiological, Biochemical, and Molecular Aspects. Science Publishers Inc., Plymouth, UK, pp. 185–197.
  • Çelik, S. (2011). Bağcılık (Ampeloloji). Namık Kemal Üniversitesi, Ziraat Fakültesi, Bahçe Bitkileri Bölümü, Cilt 1, 3. Baskı, Tekirdağ.
  • De Klerk, G. J., Ter Brugge, J., & Marinova, S. (1997). Effectiveness of indoleaceticacid, indolebutyric acid and naphthaleneacetic acid during adventitious root formation in vitro in Malus ‘Jork 9’, Plant Cell Tissue and Organ Culture, 49,39-44.
  • Di Marco, S., & Osti, F. (2007). Effects of Trichoderma applications on vines grown in organic nursery IFOAM Organic World Congress, Modena, Italy, June 16-20, 2008.
  • Ercişli, S., Eşitken, A., Cangi, R., & Şahin, F. (2003). Adventitious root formation of kiwifruit in relation to sampling date, IBA and Agrobacterium rubi inoculation. Plant Growth Regulation 41: 133-137.
  • Eşitken, A., Ercişli, S., Şevik, İ., & Şahin, F. (2003). Effect of ındole-3- butyric acid and different strains of Agrobacterium rubi on adventitive root formation from softwood and semi-hardwood wild sour cherry cuttings. Turk J Agric For 27, 37-42 Tubitak.
  • Eşitken, A., Karlidag, H., Ercisli, S., Turan, M., & Sahin, F. (2003). The effect of spraying a growth promoting bacterium on the yield, growth and nutrient element composition of leaves of apricot (Prunus armeniaca L. cv. Hacihaliloglu). Aust J Agr Res 54: 377–380.
  • Ferreira, G. M., Moreira, R. R., Jarek, T. M., Nesi, C. N., Biasi, L. A., & Mio, L. L. M. (2022). Alternative control of downy mildew and grapevine leaf spot on Vitis labrusca. Australasian Plant Pathology 51 (2) 193-201, 2022. DOI: https://doi.org/10.1007/s13313-021-00836-7
  • Frommel, M. I., Nowak, J., & Lazarovits, G. (1991). Growth enhancement and developmental modifications of in vitro grown potato (Solanum tuberosum ssp. tuberosum) as affected by a nonfluorescent Pseudomonas sp Plant Physiol., 96 (1991), pp. 928-936
  • Figiel-Kroczyńska, M., Krupa-Małkiewicz, M., & Ochmian, I. (2022). Efficient micropropagation protocol of three cultivars of highbush blueberry (Vaccinium corymbosum L.). Not Bot Horti Agrobo 50(4):12856. DOI:10.15835/nbha50412856
  • Fu, L., Cai, R., Feng, Z., Song, X., Zhu, Y., & Shi, F. (2022). Screening of biocontrol Bacillus spp. and its suppression efficacy on grape gray mold. Chinese Journal of Biological Control 38 (2) 440-446, DOI: 10.16409/j.cnki.2095-039x.2022.02.016
  • Glick, B. R. (1995). The enhancement of plant growth by free-living bacteria. Can. J. Microbiol. 41, 109–117. DOI: https://doi.org/10.1139/m95-015
  • Goto, M. (1990). Fundamentals of Bacterial Plant Pathology, Academic Press. Inc. San
  • Gökbayrak, Z. (2006). Troublesome Pest of Viticulture: Phylloxera. Alatarım 2006, 5, 37–43.
  • Granett, J., Walker, M., Kocsis, L., & Omer, A. D. (2001). Biology and Management of Grape Phylloxera. Annual Review of Entomology 46:387-412.
  • Howell, G. S., (1987). Vitis Rootstocks. In: Rom, R. C., Carlson, R. F. (Eds.), Rootstocks for Fruit Crops, A Wiley P Inter Sciece Publication, John Wiley and Sons, NewYork, Inc, p 451–472
  • Khalid, A., Arshad, M., &Zahir, Z. A. (2004). Screening plant growth-promoting rhizobacteria for improving growth and yield of wheat, Journal of Applied Microbiology, 96, 473-480. DOI: https://doi.org/10.1046/j.1365-2672.2003.02161.x
  • Kloepper, J. W. (1994). Plant growth-promoting rhizobacteria. In: Okon, Y. (Ed.), Azospirillum/Plant Associations. CRC Press, Boca Raton, FL, pp. 137–166.
  • Korkutal, I., Bahar, E., & Gunes, N. (2017). Different doses effects of Trichoderma harzianum and Bacillus subtilis on cv. Syrah: I. young plants performance during growing period in organic viticulture. 2nd International Balkan Agriculture Congress, Tekirdag, Turkey, 16-18 May 2017, pp. 650-657
  • Köse, C., Güleryüz, M., Şahin, F., & Demirtaş, İ. (2005). Effects of some plant growth promoting rhizobacteria (PGPR) on graft union of grapevine. J Sustain Agric. 26(2): 139-147. DOI: https://doi.org/10.1300/J064v26n02_10
  • Larraburu, E. E., Carletti, S. M., Rodríguez Cáceres, E. A., & Llorente, B. E. (2007). Micropropagation of photinia employing rhizobacteria to promote root development, Plant Cell Reports, 26 (6), 711-717. DOI: 10.1007/s00299-006-0279-2
  • Mahmood, M. N. (2015). Effect of different doses of biofungicides on growth characteristics of Merlot vines grafted on to 110R rootstock. Namık Kemal University, Graduate School of Natural and Applied Sciences, Tekirdağ. 146s.
  • Mendes, R., Garbeva, P., & Raaijmakers, J. M. (2013). The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol. Rev. 37, 634–663. DOI: https://doi.org/10.1111/1574-6976.12028
  • Murashige, T., & Skoog, F. A. (1962). A Revised medium for Rapid Growth and Bioassays with Tobacco Tissue Cultures. Physiol. Plant. 15, pp. 473-497.
  • Nowak, J., Asiedu, S. K., Bensalim, S., Richards, J., Stewart, A., Smith, C., Stevens, D. and Sturz, A. V. (1998) From laboratory to applications: challenges and progress with in vitro dual cultures of potato and beneficial bacteria. Plant Cell Tissue Organ Cult. 52, 97-103. DOI: 10.1007/978-94-015-8951-2_39
  • Ostroukhova ,E., Peskova, I., Levchenko, S., Vyugina, M., Belash, D., & Shadura, N. (2022). The use of a microbiological preparation based on Bacillus subtilis in organic viticulture Source: BIO Web of Conferences 48 (Art. 02006) 8 pp., 2022. DOI:10.1051/bioconf/20224802006
  • Patena, L., Sutter, E. G., & Dandekar, A. M. (1988). Root induction by Agrobacterium rhizogenes in a difficult to root woody species. Acta Horticulturae 227: 324-329. DOI: 10.17660/ActaHortic.1988.227.59
  • Pedrotti, E. L., Jay-Allemand, C., Doumas, P., & Cornu, D. (1994). Effect of autoclaving amino acids on in vitro rooting response of wildcherry shoot. Scientia Horticulturae 57 (1): 89-98. DOI: https://doi.org/10.1016/0304-4238(94)90037-X
  • Peyvandi, M., Farahani, F., Mazinani, M. H., Noormohamadi, Z., Ataii, S., & Asgharzade, A. (2010). Pseudomonas fluorescent and its ability to promote root formation of olive micro shoots. International Journal of Plant Production 4 (1)
  • Sabir, A. (2013). Improvement of grafting efficiency in hard grafting grape Berlandieri hybrid rootstocks by plant growth-promoting rhizobacteria (PGPR). Scientia Horticulturae (Amsterdam), 164, 24–29. DOI: https://doi.org/10.1016/j.scienta.2013.08.035.
  • Sabir, A., Yazici, M. A., Kara, Z., & Şahin, F. (2012). Growth and mineral acquisition response of grapevine rootstocks (Vitis spp.) to inoculation with different strains of plant growth-promoting rhizobacteria (PGPR). J Sci Food and Agric 92(10): 2148-2153. DOI: https://doi.org/10.1002/jsfa.5600
  • Sharma, V., Kamal, B., Srivastava, N., Negi, Y., Dobriyal, A. K., & Jadon, V. S., (2014). Enhancement of in vitro growth of Swertia chirayita Roxb. Ex Fleming cocultured with plant growth promoting rhizobacteria, Plant Cell Tiss Organ Cult. 121, pages215–225 (2015). DOI: 10.1007/s11240-014-0696-9
  • Sivritepe, N. (1995). Researches on salt resistance tests and some factors affecting salt resistance in grapevines. Uludağ University Graduate School of Natural and Applied Sciences Department of Horticulture (PhD thesis), Bursa, 176 s.
  • Srinivasan, M., Holl, F. B., & Petersen, D. J. (1996). Influence of indoleacetic-acid-producing Bacillus isolates on the nodulation of Phaseolus vulgaris by Rhizobium etli under gno to biotic conditions, Canadian Journal of Microbiology 42 (10): 1006-1014. DOI: https://doi.org/10.1139/m96-129
  • Steenhoudt, O., & Vanderleyden, J. (2000). Azospirillum, a free-living nitrogen- fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspect, FEMS Microbiology Reviews, 24, 487-506. DOI: https://doi.org/10.1111/j.1574-6976.2000.tb00552.x
  • Teixeira, D. A., Alfenas, A. C., Mafia, R. G., Ferreira, E. M., De Siqueira, L., Maffia, L. A., & Mounteer, A. H. (2007). Rhizobacterial promotion of eucalypt rooting and growth. Brazilian Journal of Microbiology 38: 118-123. DOI: https://doi.org/10.1590/S1517-83822007000100025
  • Tripp, K. E., & Stomp, A. M. (1997). Horticultural applications of Agrobacterium rhizogenes (hairy-root): enhanced rooting of difficult to root woody plants. Combined Proceedings of the International Plant Propagators’ Society 47: 527-535.
  • Yağcı, A. (2022). Bağcılık (Lecture notes). https://antalya.tarimorman.gov.tr/Belgeler/bagcilik.pdf (date of access: 12.02.2023)
Toplam 48 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Ziraat Mühendisliği (Diğer)
Bölüm Araştırma Makaleleri
Yazarlar

Neval Topcu Altıncı 0000-0002-4734-7832

Fatih Çiçekli 0000-0003-2914-3614

Erken Görünüm Tarihi 25 Mart 2024
Yayımlanma Tarihi 25 Mart 2024
Gönderilme Tarihi 12 Ekim 2023
Kabul Tarihi 18 Ocak 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 28 Sayı: 1

Kaynak Göster

APA Topcu Altıncı, N., & Çiçekli, F. (2024). The effect of plant growth regulator bacteria on micro propagation of grapevine rootstock with three different rooting abilities. Harran Tarım Ve Gıda Bilimleri Dergisi, 28(1), 1-10. https://doi.org/10.29050/harranziraat.1374440

Derginin Tarandığı İndeksler

13435  19617   22065  13436  134401344513449 13439 13464  22066   22069  13466 

10749 Harran Tarım ve Gıda Bilimi Dergisi, Creative Commons Atıf –Gayrı Ticari 4.0 Uluslararası (CC BY-NC 4.0) Lisansı ile lisanslanmıştır.