Investigation of the effect of boiling on the level of milk miR-191
Yıl 2024,
Cilt: 28 Sayı: 3, 480 - 488, 28.09.2024
Fatih Atilla Bağcı
,
Dilek Pirim
Öz
MicroRNAs (miRNAs) are small non-coding RNA sequences ~22 bp in length that play an active role in cellular processes. Recent studies have identified miRNA abundance in cow’s milk, highlighting their nutritional impact and their potential utilization as biomarkers of food quality. However, current research suggests that dietary intake of cow’s milk miRNAs may transfer to humans and have nutritional relevance for human health by entering human circulation and affecting important pathways associated with human diseases. Therefore, it is crucial to determine the miRNA content in milk and dairy products. The miR-191 has a similar sequence in cows and humans, and it has been previously shown to abundantly exist in cow milk. Here, we aimed to investigate the effects of boiling to the miR-191 levels in milk. Total RNA was isolated from raw and milk boiled at 100°C, and miR-191 levels in raw and boiled milk were analyzed by RT-qPCR method. Previous research reported that homogenization and pasteurization processes used in milk production stages have miRNA-specific distinct effects. After heat treatments, the amount of miR-191 was reduced by 95.8% (p<0.0001) in boiled raw milk and 66.4% (p=0.001) in boiled pasteurized milk compared to pasteurized milk. Meanwhile, we observed a statistically significant difference (p<0.0001) in the CT values obtained by quantification of miR-191 in raw and pasteurized milk. The results of our study present preliminary data for the effects of boiling milk on the milk miRNA content and point out the significance of miRNA-specific effects of milk processing steps on milk miRNA composition.
Proje Numarası
FLO-2023-1551
Kaynakça
- Abou el qassim, L., Le Guillou, S., & Royo, L. J. (2022). Variation of miRNA Content in Cow Raw Milk Depending on the Dairy Production System. International Journal of Molecular Sciences, 23(19), Article 19. DOI:https://doi.org/10.3390/ijms231911681
- Abou el qassim, L., Martínez, B., Rodríguez, A., Dávalos, A., López de las Hazas, M.-C., Menéndez Miranda, M., & Royo, L. J. (2023). Effects of Cow’s Milk Processing on MicroRNA Levels. Foods, 12(15), Article 15. DOI:https://doi.org/10.3390/foods12152950
- Arslan, Ö., Sevı̇m, A., Güler, D., & Saner, G. (2020). İzmir İlinde Tüketicilerin Çiğ Süt Satın Alma Kararlarını Etkileyen Faktörlerin Analizi. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 51(3), Article 3. DOI:https://doi.org/10.17097/ataunizfd.694829
- Ashirbekov, Y., Abaildayev, A., Omarbayeva, N., Botbayev, D., Belkozhayev, A., Askandirova, A., Neupokoyeva, A., Utegenova, G., Sharipov, K., & Aitkhozhina, N. (2020). Combination of circulating miR-145-5p/miR-191-5p as biomarker for breast cancer detection. PeerJ, 8, e10494. DOI:https://doi.org/10.7717/peerj.10494
- Baier, S. R., Nguyen, C., Xie, F., Wood, J. R., & Zempleni, J. (2014). MicroRNAs are absorbed in biologically meaningful amounts from nutritionally relevant doses of cow milk and affect gene expression in peripheral blood mononuclear cells, HEK-293 kidney cell cultures, and mouse livers. The Journal of Nutrition, 144(10), 1495–1500. DOI:https://doi.org/10.3945/jn.114.196436
- Benmoussa, A., Laugier, J., Beauparlant, C. J., Lambert, M., Droit, A., & Provost, P. (2020). Complexity of the microRNA transcriptome of cow milk and milk-derived extracellular vesicles isolated via differential ultracentrifugation. Journal of Dairy Science, 103(1), 16–29. DOI:https://doi.org/10.3168/jds.2019-16880
- Cieślik, M., Bryniarski, K., Nazimek, K., Cieślik, M., Bryniarski, K., & Nazimek, K. (2023). Dietary and orally-delivered miRNAs: Are they functional and ready to modulate immunity? AIMS Allergy and Immunology, 7(1), Article allergy-07-01-008. DOI:https://doi.org/10.3934/Allergy.2023008
- Howard, K. M., Jati Kusuma, R., Baier, S. R., Friemel, T., Markham, L., Vanamala, J., & Zempleni, J. (2015). Loss of miRNAs during processing and storage of cow’s (Bos taurus) milk. Journal of Agricultural and Food Chemistry, 63(2), 588–592. DOI:https://doi.org/10.1021/jf505526w
- Izumi, H., Kosaka, N., Shimizu, T., Sekine, K., Ochiya, T., & Takase, M. (2012). Bovine milk contains microRNA and messenger RNA that are stable under degradative conditions. Journal of Dairy Science, 95(9), 4831–4841. DOI:https://doi.org/10.3168/jds.2012-5489
- Izumi, H., Tsuda, M., Sato, Y., Kosaka, N., Ochiya, T., Iwamoto, H., Namba, K., & Takeda, Y. (2015). Bovine milk exosomes contain microRNA and mRNA and are taken up by human macrophages. Journal of Dairy Science, 98(5), 2920–2933. DOI:https://doi.org/10.3168/jds.2014-9076
- Kirchner, B., Pfaffl, M. W., Dumpler, J., von Mutius, E., & Ege, M. J. (2016). microRNA in native and processed cow’s milk and its implication for the farm milk effect on asthma. The Journal of Allergy and Clinical Immunology, 137(6), 1893-1895.e13. DOI:https://doi.org/10.1016/j.jaci.2015.10.028
- Li, W., Li, W., Wang, X., Zhang, H., Wang, L., & Gao, T. (2022). Comparison of miRNA profiles in milk-derived extracellular vesicles and bovine mammary glands. International Dairy Journal, 134, 105444. DOI:https://doi.org/10.1016/j.idairyj.2022.105444
- Li, H., Du, M., Xu, W., & Wang, Z. (2021). MiR-191 downregulation protects against isoflurane-induced neurotoxicity through targeting BDNF. Toxicology Mechanisms and Methods, 31(5), 367–373. DOI:https://doi.org/10.1080/15376516.2021.1886211
- Lichołai, S., Studzińska, D., Plutecka, H., Gubała, T., Szczeklik, W., & Sanak, M. (2021). MiR-191 as a Key Molecule in Aneurysmal Aortic Remodeling. Biomolecules, 11(11), 1611. DOI:https://doi.org/10.3390/biom11111611
- Melnik, B. C., John, S. M., & Schmitz, G. (2014). Milk: An exosomal microRNA transmitter promoting thymic regulatory T cell maturation preventing the development of atopy? Journal of Translational Medicine, 12, 43. DOI:https://doi.org/10.1186/1479-5876-12-43
- Melnik, B. C., & Schmitz, G. (2017). MicroRNAs: Milk’s epigenetic regulators. Best Practice & Research. Clinical Endocrinology & Metabolism, 31(4), 427–442. DOI:https://doi.org/10.1016/j.beem.2017.10.003
- Melnik, B. C., Weiskirchen, R., & Schmitz, G. (2022). Milk exosomal microRNAs: Friend or foe?—a narrative review. ExRNA, 4(0). DOI:https://doi.org/10.21037/exrna-22-5
- Nagpal, N., & Kulshreshtha, R. (2014). miR-191: An emerging player in disease biology. Frontiers in Genetics, 5, 99. DOI:https://doi.org/10.3389/fgene.2014.00099
- Oh, S., Park, M. R., Son, S. J., & Kim, Y. (2015). Comparison of Total RNA Isolation Methods for Analysis of Immune-Related microRNAs in Market Milks. Korean Journal for Food Science of Animal Resources, 35(4), 459–465. DOI:https://doi.org/10.5851/kosfa.2015.35.4.459
- Polioudakis, D., Abell, N. S., & Iyer, V. R. (2015). MiR-191 Regulates Primary Human Fibroblast Proliferation and Directly Targets Multiple Oncogenes. PLOS ONE, 10(5), e0126535.
- OI:https://doi.org/10.1371/journal.pone.0126535
- Rani, P., Yenuganti, V. R., Shandilya, S., Onteru, S. K., & Singh, D. (2017). miRNAs: The hidden bioactive component of milk. Trends in Food Science & Technology, 65, 94–102. DOI:https://doi.org/10.1016/j.tifs.2017.05.007
- Ray, J., Haughey, C., Hoey, C., Jeon, J., Murphy, R., Dura-Perez, L., McCabe, N., Downes, M., Jain, S., Boutros, P. C., Mills, I. G., & Liu, S. K. (2020). miR-191 promotes radiation resistance of prostate cancer through interaction with RXRA. Cancer Letters, 473, 107–117. DOI:https://doi.org/10.1016/j.canlet.2019.12.025
- Sadri, M., Shu, J., Kachman, S. D., Cui, J., & Zempleni, J. (2020). Milk exosomes and miRNA cross the placenta and promote embryo survival in mice. Reproduction (Cambridge, England), 160(4), 501–509. DOI:https://doi.org/10.1530/REP-19-0521
- Sevim, A., Arslan, Ö., Güler, D., & Saner, G. (2021). Tüketicilerin çiğ süt satın alma eğilimlerinin saptanması: İzmir ili Örneği. Mediterranean Agricultural Sciences, 34(1), Article 1. DOI:https://doi.org/10.29136/mediterranean.655574
- Tian, F., Yu, C., Wu, M., Wu, X., Wan, L., & Zhu, X. (2019). MicroRNA-191 promotes hepatocellular carcinoma cell proliferation by has_circ_0000204/miR-191/KLF6 axis. Cell Proliferation, 52(5), e12635. DOI:https://doi.org/10.1111/cpr.12635
- Tremonte, P., Tipaldi, L., Succi, M., Pannella, G., Falasca, L., Capilongo, V., Coppola, R., & Sorrentino, E. (2014). Raw milk from vending machines: Effects of boiling, microwave treatment, and refrigeration on microbiological quality. Journal of Dairy Science, 97(6), 3314–3320. DOI:https://doi.org/10.3168/jds.2013-7744
- Wang, L., Shui, X., Zhang, M., Mei, Y., Xia, Y., Lan, G., Hu, L., Gan, C.-L., Tian, Y., Li, R., Gu, X., Zhang, T., Chen, D., & Lee, T. H. (2022). MiR-191-5p Attenuates Tau Phosphorylation, Aβ Generation, and Neuronal Cell Death by Regulating Death-Associated Protein Kinase 1. ACS Chemical Neuroscience, 13(24), 3554–3566. DOI:https://doi.org/10.1021/acschemneuro.2c00423
- Winter, J., & Diederichs, S. (2011). Argonaute proteins regulate microRNA stability: Increased microRNA abundance by Argonaute proteins is due to microRNA stabilization. RNA Biology, 8(6), 1149–1157. DOI:https://doi.org/10.4161/rna.8.6.17665
- Yu, J., Zhou, A., & Li, Y. (2022). Clinical value of miR-191-5p in predicting the neurological outcome after out-of-hospital cardiac arrest. Irish Journal of Medical Science, 191(4), 1607–1612. DOI:https://doi.org/10.1007/s11845-021-02745-6
- Zeng, B., Chen, T., Luo, J.-Y., Zhang, L., Xi, Q.-Y., Jiang, Q.-Y., Sun, J.-J., & Zhang, Y.-L. (2021). Biological Characteristics and Roles of Noncoding RNAs in Milk-Derived Extracellular Vesicles. Advances in Nutrition, 12(3), 1006–1019. DOI:https://doi.org/10.1093/advances/nmaa124
- Zhang, X.-F., Li, K., Gao, L., Li, S.-Z., Chen, K., Zhang, J.-B., Wang, D., Tu, R.-F., Zhang, J.-X., Tao, K.-X., Wang, G., & Zhang, X.-D. (2014). miR-191 promotes tumorigenesis of human colorectal cancer through targeting C/EBPβ. Oncotarget, 6(6), 4144–4158. DOI:https://doi.org/10.18632/oncotarget.2864
- Zhang, Y., Xu, Q., Hou, J., Huang, G., Zhao, S., Zheng, N., & Wang, J. (2022). Loss of bioactive microRNAs in cow’s milk by ultra-high-temperature treatment but not by pasteurization treatment. Journal of the Science of Food and Agriculture, 102(7), 2676–2685. DOI:https://doi.org/10.1002/jsfa.11607
- Zheng, Y., Yang, Z., Jin, C., Chen, C., & Wu, N. (2021). Hsa-miR-191-5p inhibits replication of human immunodeficiency virus type 1 by downregulating the expression of NUP50. Archives of Virology, 166(3), 755–766. DOI:https://doi.org/10.1007/s00705-020-04899-7
- Pan, L., Liu, W., Zhao, H., Chen, B., & Yue, X. (2023). MiR-191-5p inhibits KLF6 to promote epithelial-mesenchymal transition in breast cancer. Technology and Health Care: Official Journal of the European Society for Engineering and Medicine, 31(6), 2251–2265. DOI:https://doi.org/10.3233/THC-230217
- Sharma, S., Nagpal, N., Ghosh, P. C., & Kulshreshtha, R. (2017). P53-miR-191-SOX4 regulatory loop affects apoptosis in breast cancer. RNA (New York, N.Y.), 23(8), 1237–1246. DOI:https://doi.org/10.1261/rna.060657.117
Sütün kaynatılmasının süt miR-191 düzeyine etkisinin araştırılması
Yıl 2024,
Cilt: 28 Sayı: 3, 480 - 488, 28.09.2024
Fatih Atilla Bağcı
,
Dilek Pirim
Öz
MikroRNA'lar (miRNA'lar), gen anlatımının düzenlenmesinde etkin rol oynayan ~22 bp uzunluğunda küçük, kodlanmayan RNA dizileridir. Son yıllarda yapılan araştırmalarda inek sütünde bol miktarda miRNA bulunduğu tespit edilmiş ve inek sütü miRNA’larının gıda kalitesinde biyobelirteç olarak kullanım potansiyellerine yönelik bulgular elde edilmiştir. Ayrıca, güncel araştırmalar beslenme yoluyla inek sütü miRNA’larının insana transfer olarak önemli bir biyoaktif besin komponenti olabileceğini göstermektedir. Süt ve süt ürünlerinde üretim aşamalarında bozunmadan kalan inek sütü miRNA'larının insanların dolaşım sistemine geçerek farklı insan hastalıkları ile ilişkili önemli yolaklara etki edebileceği düşünülmektedir. Bu sebepten süt ve süt ürünlerinin miRNA içeriklerinin belirlenmesi önemlidir ve bu konuda güncel literatürde önemli bir boşluk olduğu gözlenmektedir. Bu çalışmada, literatürden insan homolog sekansına sahip ve inek sütünde bol miktarda bulunan miR-191’in kaynatma aşaması sonrası içme sütündeki miktarındaki değişiklik araştırılmıştır. Bu kapsamda süt örnekleri (çiğ süt ve pastörize süt) 100°C’de kaynatılarak örneklerden total RNA izolasyonu gerçekleştirilmiş ve elde edilen RNA’lardaki miR-191 miktarı RT-qPCR yöntemi ile analiz edilmiştir. Literatürde içme sütünün üretiminde kullanılan homojenizasyon ve pastörizasyon işlemlerinin miRNA spesifik farklı etkilere sebep olduğu gözlenmiştir. Gerçekleştirilen işlemler sonucunda literatüre uyumlu biçimde miR-191 miktarında kaynatılmış çiğ sütte %95.8 oranında (p<0.0001) ve kaynatılmış pastörize sütte %66.4 oranında (p=0.001) azalma gözlemlenmiştir. Bunun yanında çiğ süt ve pastörize sütte analiz edilen miR-191 için elde edilen CT değerleri arasında istatistiksel olarak anlamlı bir farklılık olduğu gözlenmiştir (p<0.0001). Çalışmamızın sonucu, sütün kaynatılmasının süt miRNA içeriği üzerindeki etkilerine ilişkin ön veriler ortaya koyarak işleme adımlarının süt miRNA bileşimi üzerine miRNA spesifik etkisinin olduğunu önemle vurgulamaktadır.
Etik Beyan
Bu çalışmada etik kurul onayına ihtiyaç yoktur.
Destekleyen Kurum
Bu çalışma Bursa Uludağ Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon birimi tarafından desteklenmiştir (FLO-2023-1551)
Proje Numarası
FLO-2023-1551
Kaynakça
- Abou el qassim, L., Le Guillou, S., & Royo, L. J. (2022). Variation of miRNA Content in Cow Raw Milk Depending on the Dairy Production System. International Journal of Molecular Sciences, 23(19), Article 19. DOI:https://doi.org/10.3390/ijms231911681
- Abou el qassim, L., Martínez, B., Rodríguez, A., Dávalos, A., López de las Hazas, M.-C., Menéndez Miranda, M., & Royo, L. J. (2023). Effects of Cow’s Milk Processing on MicroRNA Levels. Foods, 12(15), Article 15. DOI:https://doi.org/10.3390/foods12152950
- Arslan, Ö., Sevı̇m, A., Güler, D., & Saner, G. (2020). İzmir İlinde Tüketicilerin Çiğ Süt Satın Alma Kararlarını Etkileyen Faktörlerin Analizi. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 51(3), Article 3. DOI:https://doi.org/10.17097/ataunizfd.694829
- Ashirbekov, Y., Abaildayev, A., Omarbayeva, N., Botbayev, D., Belkozhayev, A., Askandirova, A., Neupokoyeva, A., Utegenova, G., Sharipov, K., & Aitkhozhina, N. (2020). Combination of circulating miR-145-5p/miR-191-5p as biomarker for breast cancer detection. PeerJ, 8, e10494. DOI:https://doi.org/10.7717/peerj.10494
- Baier, S. R., Nguyen, C., Xie, F., Wood, J. R., & Zempleni, J. (2014). MicroRNAs are absorbed in biologically meaningful amounts from nutritionally relevant doses of cow milk and affect gene expression in peripheral blood mononuclear cells, HEK-293 kidney cell cultures, and mouse livers. The Journal of Nutrition, 144(10), 1495–1500. DOI:https://doi.org/10.3945/jn.114.196436
- Benmoussa, A., Laugier, J., Beauparlant, C. J., Lambert, M., Droit, A., & Provost, P. (2020). Complexity of the microRNA transcriptome of cow milk and milk-derived extracellular vesicles isolated via differential ultracentrifugation. Journal of Dairy Science, 103(1), 16–29. DOI:https://doi.org/10.3168/jds.2019-16880
- Cieślik, M., Bryniarski, K., Nazimek, K., Cieślik, M., Bryniarski, K., & Nazimek, K. (2023). Dietary and orally-delivered miRNAs: Are they functional and ready to modulate immunity? AIMS Allergy and Immunology, 7(1), Article allergy-07-01-008. DOI:https://doi.org/10.3934/Allergy.2023008
- Howard, K. M., Jati Kusuma, R., Baier, S. R., Friemel, T., Markham, L., Vanamala, J., & Zempleni, J. (2015). Loss of miRNAs during processing and storage of cow’s (Bos taurus) milk. Journal of Agricultural and Food Chemistry, 63(2), 588–592. DOI:https://doi.org/10.1021/jf505526w
- Izumi, H., Kosaka, N., Shimizu, T., Sekine, K., Ochiya, T., & Takase, M. (2012). Bovine milk contains microRNA and messenger RNA that are stable under degradative conditions. Journal of Dairy Science, 95(9), 4831–4841. DOI:https://doi.org/10.3168/jds.2012-5489
- Izumi, H., Tsuda, M., Sato, Y., Kosaka, N., Ochiya, T., Iwamoto, H., Namba, K., & Takeda, Y. (2015). Bovine milk exosomes contain microRNA and mRNA and are taken up by human macrophages. Journal of Dairy Science, 98(5), 2920–2933. DOI:https://doi.org/10.3168/jds.2014-9076
- Kirchner, B., Pfaffl, M. W., Dumpler, J., von Mutius, E., & Ege, M. J. (2016). microRNA in native and processed cow’s milk and its implication for the farm milk effect on asthma. The Journal of Allergy and Clinical Immunology, 137(6), 1893-1895.e13. DOI:https://doi.org/10.1016/j.jaci.2015.10.028
- Li, W., Li, W., Wang, X., Zhang, H., Wang, L., & Gao, T. (2022). Comparison of miRNA profiles in milk-derived extracellular vesicles and bovine mammary glands. International Dairy Journal, 134, 105444. DOI:https://doi.org/10.1016/j.idairyj.2022.105444
- Li, H., Du, M., Xu, W., & Wang, Z. (2021). MiR-191 downregulation protects against isoflurane-induced neurotoxicity through targeting BDNF. Toxicology Mechanisms and Methods, 31(5), 367–373. DOI:https://doi.org/10.1080/15376516.2021.1886211
- Lichołai, S., Studzińska, D., Plutecka, H., Gubała, T., Szczeklik, W., & Sanak, M. (2021). MiR-191 as a Key Molecule in Aneurysmal Aortic Remodeling. Biomolecules, 11(11), 1611. DOI:https://doi.org/10.3390/biom11111611
- Melnik, B. C., John, S. M., & Schmitz, G. (2014). Milk: An exosomal microRNA transmitter promoting thymic regulatory T cell maturation preventing the development of atopy? Journal of Translational Medicine, 12, 43. DOI:https://doi.org/10.1186/1479-5876-12-43
- Melnik, B. C., & Schmitz, G. (2017). MicroRNAs: Milk’s epigenetic regulators. Best Practice & Research. Clinical Endocrinology & Metabolism, 31(4), 427–442. DOI:https://doi.org/10.1016/j.beem.2017.10.003
- Melnik, B. C., Weiskirchen, R., & Schmitz, G. (2022). Milk exosomal microRNAs: Friend or foe?—a narrative review. ExRNA, 4(0). DOI:https://doi.org/10.21037/exrna-22-5
- Nagpal, N., & Kulshreshtha, R. (2014). miR-191: An emerging player in disease biology. Frontiers in Genetics, 5, 99. DOI:https://doi.org/10.3389/fgene.2014.00099
- Oh, S., Park, M. R., Son, S. J., & Kim, Y. (2015). Comparison of Total RNA Isolation Methods for Analysis of Immune-Related microRNAs in Market Milks. Korean Journal for Food Science of Animal Resources, 35(4), 459–465. DOI:https://doi.org/10.5851/kosfa.2015.35.4.459
- Polioudakis, D., Abell, N. S., & Iyer, V. R. (2015). MiR-191 Regulates Primary Human Fibroblast Proliferation and Directly Targets Multiple Oncogenes. PLOS ONE, 10(5), e0126535.
- OI:https://doi.org/10.1371/journal.pone.0126535
- Rani, P., Yenuganti, V. R., Shandilya, S., Onteru, S. K., & Singh, D. (2017). miRNAs: The hidden bioactive component of milk. Trends in Food Science & Technology, 65, 94–102. DOI:https://doi.org/10.1016/j.tifs.2017.05.007
- Ray, J., Haughey, C., Hoey, C., Jeon, J., Murphy, R., Dura-Perez, L., McCabe, N., Downes, M., Jain, S., Boutros, P. C., Mills, I. G., & Liu, S. K. (2020). miR-191 promotes radiation resistance of prostate cancer through interaction with RXRA. Cancer Letters, 473, 107–117. DOI:https://doi.org/10.1016/j.canlet.2019.12.025
- Sadri, M., Shu, J., Kachman, S. D., Cui, J., & Zempleni, J. (2020). Milk exosomes and miRNA cross the placenta and promote embryo survival in mice. Reproduction (Cambridge, England), 160(4), 501–509. DOI:https://doi.org/10.1530/REP-19-0521
- Sevim, A., Arslan, Ö., Güler, D., & Saner, G. (2021). Tüketicilerin çiğ süt satın alma eğilimlerinin saptanması: İzmir ili Örneği. Mediterranean Agricultural Sciences, 34(1), Article 1. DOI:https://doi.org/10.29136/mediterranean.655574
- Tian, F., Yu, C., Wu, M., Wu, X., Wan, L., & Zhu, X. (2019). MicroRNA-191 promotes hepatocellular carcinoma cell proliferation by has_circ_0000204/miR-191/KLF6 axis. Cell Proliferation, 52(5), e12635. DOI:https://doi.org/10.1111/cpr.12635
- Tremonte, P., Tipaldi, L., Succi, M., Pannella, G., Falasca, L., Capilongo, V., Coppola, R., & Sorrentino, E. (2014). Raw milk from vending machines: Effects of boiling, microwave treatment, and refrigeration on microbiological quality. Journal of Dairy Science, 97(6), 3314–3320. DOI:https://doi.org/10.3168/jds.2013-7744
- Wang, L., Shui, X., Zhang, M., Mei, Y., Xia, Y., Lan, G., Hu, L., Gan, C.-L., Tian, Y., Li, R., Gu, X., Zhang, T., Chen, D., & Lee, T. H. (2022). MiR-191-5p Attenuates Tau Phosphorylation, Aβ Generation, and Neuronal Cell Death by Regulating Death-Associated Protein Kinase 1. ACS Chemical Neuroscience, 13(24), 3554–3566. DOI:https://doi.org/10.1021/acschemneuro.2c00423
- Winter, J., & Diederichs, S. (2011). Argonaute proteins regulate microRNA stability: Increased microRNA abundance by Argonaute proteins is due to microRNA stabilization. RNA Biology, 8(6), 1149–1157. DOI:https://doi.org/10.4161/rna.8.6.17665
- Yu, J., Zhou, A., & Li, Y. (2022). Clinical value of miR-191-5p in predicting the neurological outcome after out-of-hospital cardiac arrest. Irish Journal of Medical Science, 191(4), 1607–1612. DOI:https://doi.org/10.1007/s11845-021-02745-6
- Zeng, B., Chen, T., Luo, J.-Y., Zhang, L., Xi, Q.-Y., Jiang, Q.-Y., Sun, J.-J., & Zhang, Y.-L. (2021). Biological Characteristics and Roles of Noncoding RNAs in Milk-Derived Extracellular Vesicles. Advances in Nutrition, 12(3), 1006–1019. DOI:https://doi.org/10.1093/advances/nmaa124
- Zhang, X.-F., Li, K., Gao, L., Li, S.-Z., Chen, K., Zhang, J.-B., Wang, D., Tu, R.-F., Zhang, J.-X., Tao, K.-X., Wang, G., & Zhang, X.-D. (2014). miR-191 promotes tumorigenesis of human colorectal cancer through targeting C/EBPβ. Oncotarget, 6(6), 4144–4158. DOI:https://doi.org/10.18632/oncotarget.2864
- Zhang, Y., Xu, Q., Hou, J., Huang, G., Zhao, S., Zheng, N., & Wang, J. (2022). Loss of bioactive microRNAs in cow’s milk by ultra-high-temperature treatment but not by pasteurization treatment. Journal of the Science of Food and Agriculture, 102(7), 2676–2685. DOI:https://doi.org/10.1002/jsfa.11607
- Zheng, Y., Yang, Z., Jin, C., Chen, C., & Wu, N. (2021). Hsa-miR-191-5p inhibits replication of human immunodeficiency virus type 1 by downregulating the expression of NUP50. Archives of Virology, 166(3), 755–766. DOI:https://doi.org/10.1007/s00705-020-04899-7
- Pan, L., Liu, W., Zhao, H., Chen, B., & Yue, X. (2023). MiR-191-5p inhibits KLF6 to promote epithelial-mesenchymal transition in breast cancer. Technology and Health Care: Official Journal of the European Society for Engineering and Medicine, 31(6), 2251–2265. DOI:https://doi.org/10.3233/THC-230217
- Sharma, S., Nagpal, N., Ghosh, P. C., & Kulshreshtha, R. (2017). P53-miR-191-SOX4 regulatory loop affects apoptosis in breast cancer. RNA (New York, N.Y.), 23(8), 1237–1246. DOI:https://doi.org/10.1261/rna.060657.117