Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2019, Cilt: 47 Sayı: 2, 177 - 184, 18.09.2019
https://doi.org/10.15671/hjbc.517481

Öz

Kaynakça

  • References1. M. A. Husain, Z. Yaseen, S. U. Rehman, T. Sarwar, and M. Tabish, Naproxen Intercalates with DNA and Causes Photocleavage Through ROS Generation, The FEBS Journal, 24 (2013) 6569–6580.
  • References2. K. Gurova, New hopes from old drugs: revisiting DNA-binding small molecules as anticancer agents, Future Oncol., 5 (2009) 1685–1704.
  • References3. D. R. Boer, A. Canals, and M. Coll, DNA-binding drugs caught in action: the latest 3D pictures of drug-DNA complexes, Dalton Trans., 3 (2009) 399-414.
  • References4. U. Pindur, M. Jansen, and T. Lemster, Advances in DNA-ligands with groove binding, intercalating and/or alkylating activity: chemistry, DNA-binding and biology, Curr. Med. Chem., 12 ( 2005) 2805-2847.
  • References5. L. Strekowskı and B. Wılson, Noncovalent interactions with DNA: an overview, Mutat Res-Fund Mol M., 623 ( 2007) 3–13.
  • References6. J. Li, B. Li, Y. Wu, S. Shuang, C. Dong, and M. Choi, Luminescence and binding properties of two isoquinoline alkaloids chelerythrine and sanguinarine with ctDNA, Spectrochim Acta A Mol Biomol Spectrosc., 95 (2012) 80–85.
  • References7. Y. Temerk, M. Ibrahim, H. Ibrahim, and M. Kotb, Interactions of an anticancer drug Formestane with single and double stranded DNA at physiological conditions, J Photochem Photobiol B., 149 (2012) 27–36.
  • References8. L. J. Marnett and A. S. Kalgutkar, Design of selective inhibitors of cyclooxygenase-2 as nonulcerogenic anti-inflammatory agents, Curr. Opin. Chem. Biol., 2 (1998) 482–490.
  • References9. A. S. Kalgutkar, A. B. Marnett, B. C. Crews, R. P. Remmel, and L. J. Marnett, Ester and amide derivatives of the nonsteroidal antiinflammatory drug, indomethacin, as selective cyclooxygenase-2 inhibitors, J. Med. Chem., 43 (2000) 2860–2870.
  • References10. Y. C. Kim, Y. Karton, X. D. Ji, N. Melman, J. Linden, and K. A. Jacobson, Acyl‐hydrazide derivatives of a xanthine carboxylic congener (XCC) as selective antagonists at human A2B adenosine receptors, Drug Dev. Res., 47 (1999) 178–188.
  • References11. M. Nakka, M.S. Begum, B.F.M. Varaprasad, L.V. Reddy, A. Bhattacharya, M. Helliwell, Naproxen and ibuprofen based acyl hydrazone derivatives: Synthesis, structure analysis and cytotoxicity studies. J Chem Pharm Res. 2 (2010) 393-409.
  • References12. D. Sarigol, A. Uzgoren-Baran, B.C. Tel, E.I. Somuncuoglu, I. Kazkayasi, K. Ozadali-Sari, et al., Novel thiazolo [3, 2-b]-1, 2, 4-triazoles derived from naproxen with analgesic/anti-inflammatory properties: Synthesis, biological evaluation and molecular modeling studies, Bioorg Med Chem. 23 (2015) 2518–2528.
  • References20. Y.T. Sun, S.Y. Bi, D.Q. Song, C.Y. Qiao, D. Mu, H.Q. Zhang, Study on the interaction mechanism between DNA and the main active components in Scutellaria baicalensis Georgi, Sensor Actuat B-Chem., 129 (2008) 799-810.
  • References14. G.M. Morris, R. Huey, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell, et al. AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. J Comput Chem., 30 (2009) 2785-2791.
  • References15. J.R. Lakowicz, Plasmonics in biology and plasmon-controlled fluorescence, Plasmonics, 1 (2006) 5-33.
  • References16. Y.Q. Wang, H.M. Zhang, G.C. Zhang, Studies of the interaction between palmatine hydrochloride and human serum albumin by fluorescence quenching method, J Pharmaceut Biomed., 41 (2006) 1041-1046.
  • References17. M. Wu, W. Wu, X. Lian, X. Lin, and Z. Xie, Synthesis of a novel fluorescent probe and investigation on its interaction with nucleic acid and analytical application, Spectrochim Acta A Mol Biomol Spectrosc., 71 (2008) 1333–1340.
  • References18. H. G. Li, Z. Y. Yang, B. D. Wang, and J. C. Wu, Synthesis, crystal structure, antioxidation and DNA-binding properties of the Ln complexes with 1-phenyl-3-methyl-5-hydroxypyrazole-4-carbaldhyde-(benzoyl) hydrazone, J. Organomet. Chem., 695 (2010) 415–422.
  • References19. I. Ahmad, A. Ahmad, M. Ahmad, Binding properties of pendimethalin herbicide to DNA: multispectroscopic and molecular docking approaches, Phys Chem Chem Phys., 18 (2016) 6476-85.
  • References21. P.D. Ross, S. Subramanian, Thermodynamics of Protein Association Reactions - Forces Contributing to Stability, Biochemistry-Us, 20 (1981) 3096-102.
  • References22. S.Y. Bi, L.L. Yan, Y.T. Sun, H.Q. Zhang, Investigation of ketoprofen binding to human serum albumin by spectral methods, Spectrochim Acta A., 78 (2011) 410-414.

Naproxen Derivative Interaction Properties with ct-DNA

Yıl 2019, Cilt: 47 Sayı: 2, 177 - 184, 18.09.2019
https://doi.org/10.15671/hjbc.517481

Öz

Interaction mode of a naproxen derivative (NH) with ct-DNA was explored by absorption and fluorescence spectroscopy. The experimental results revealed the static quenching as a result of groove binding between the naproxen derivative and ct-DNA. Computational studies were carried out to deeper understanding of the interactions. Molecular docking calculations shown that the interaction between NH and ct-DNA is resulted by groove binding. In addition to spectral data, docking studies revealed that NH-A_DNA and NH-B_DNA complexes had different interaction and conformational trends to each DNA isomer.

Kaynakça

  • References1. M. A. Husain, Z. Yaseen, S. U. Rehman, T. Sarwar, and M. Tabish, Naproxen Intercalates with DNA and Causes Photocleavage Through ROS Generation, The FEBS Journal, 24 (2013) 6569–6580.
  • References2. K. Gurova, New hopes from old drugs: revisiting DNA-binding small molecules as anticancer agents, Future Oncol., 5 (2009) 1685–1704.
  • References3. D. R. Boer, A. Canals, and M. Coll, DNA-binding drugs caught in action: the latest 3D pictures of drug-DNA complexes, Dalton Trans., 3 (2009) 399-414.
  • References4. U. Pindur, M. Jansen, and T. Lemster, Advances in DNA-ligands with groove binding, intercalating and/or alkylating activity: chemistry, DNA-binding and biology, Curr. Med. Chem., 12 ( 2005) 2805-2847.
  • References5. L. Strekowskı and B. Wılson, Noncovalent interactions with DNA: an overview, Mutat Res-Fund Mol M., 623 ( 2007) 3–13.
  • References6. J. Li, B. Li, Y. Wu, S. Shuang, C. Dong, and M. Choi, Luminescence and binding properties of two isoquinoline alkaloids chelerythrine and sanguinarine with ctDNA, Spectrochim Acta A Mol Biomol Spectrosc., 95 (2012) 80–85.
  • References7. Y. Temerk, M. Ibrahim, H. Ibrahim, and M. Kotb, Interactions of an anticancer drug Formestane with single and double stranded DNA at physiological conditions, J Photochem Photobiol B., 149 (2012) 27–36.
  • References8. L. J. Marnett and A. S. Kalgutkar, Design of selective inhibitors of cyclooxygenase-2 as nonulcerogenic anti-inflammatory agents, Curr. Opin. Chem. Biol., 2 (1998) 482–490.
  • References9. A. S. Kalgutkar, A. B. Marnett, B. C. Crews, R. P. Remmel, and L. J. Marnett, Ester and amide derivatives of the nonsteroidal antiinflammatory drug, indomethacin, as selective cyclooxygenase-2 inhibitors, J. Med. Chem., 43 (2000) 2860–2870.
  • References10. Y. C. Kim, Y. Karton, X. D. Ji, N. Melman, J. Linden, and K. A. Jacobson, Acyl‐hydrazide derivatives of a xanthine carboxylic congener (XCC) as selective antagonists at human A2B adenosine receptors, Drug Dev. Res., 47 (1999) 178–188.
  • References11. M. Nakka, M.S. Begum, B.F.M. Varaprasad, L.V. Reddy, A. Bhattacharya, M. Helliwell, Naproxen and ibuprofen based acyl hydrazone derivatives: Synthesis, structure analysis and cytotoxicity studies. J Chem Pharm Res. 2 (2010) 393-409.
  • References12. D. Sarigol, A. Uzgoren-Baran, B.C. Tel, E.I. Somuncuoglu, I. Kazkayasi, K. Ozadali-Sari, et al., Novel thiazolo [3, 2-b]-1, 2, 4-triazoles derived from naproxen with analgesic/anti-inflammatory properties: Synthesis, biological evaluation and molecular modeling studies, Bioorg Med Chem. 23 (2015) 2518–2528.
  • References20. Y.T. Sun, S.Y. Bi, D.Q. Song, C.Y. Qiao, D. Mu, H.Q. Zhang, Study on the interaction mechanism between DNA and the main active components in Scutellaria baicalensis Georgi, Sensor Actuat B-Chem., 129 (2008) 799-810.
  • References14. G.M. Morris, R. Huey, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell, et al. AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. J Comput Chem., 30 (2009) 2785-2791.
  • References15. J.R. Lakowicz, Plasmonics in biology and plasmon-controlled fluorescence, Plasmonics, 1 (2006) 5-33.
  • References16. Y.Q. Wang, H.M. Zhang, G.C. Zhang, Studies of the interaction between palmatine hydrochloride and human serum albumin by fluorescence quenching method, J Pharmaceut Biomed., 41 (2006) 1041-1046.
  • References17. M. Wu, W. Wu, X. Lian, X. Lin, and Z. Xie, Synthesis of a novel fluorescent probe and investigation on its interaction with nucleic acid and analytical application, Spectrochim Acta A Mol Biomol Spectrosc., 71 (2008) 1333–1340.
  • References18. H. G. Li, Z. Y. Yang, B. D. Wang, and J. C. Wu, Synthesis, crystal structure, antioxidation and DNA-binding properties of the Ln complexes with 1-phenyl-3-methyl-5-hydroxypyrazole-4-carbaldhyde-(benzoyl) hydrazone, J. Organomet. Chem., 695 (2010) 415–422.
  • References19. I. Ahmad, A. Ahmad, M. Ahmad, Binding properties of pendimethalin herbicide to DNA: multispectroscopic and molecular docking approaches, Phys Chem Chem Phys., 18 (2016) 6476-85.
  • References21. P.D. Ross, S. Subramanian, Thermodynamics of Protein Association Reactions - Forces Contributing to Stability, Biochemistry-Us, 20 (1981) 3096-102.
  • References22. S.Y. Bi, L.L. Yan, Y.T. Sun, H.Q. Zhang, Investigation of ketoprofen binding to human serum albumin by spectral methods, Spectrochim Acta A., 78 (2011) 410-414.
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Articles
Yazarlar

Nuriye Akbay 0000-0003-1993-4295

Zeynep Koksal 0000-0001-8203-4623

Tugba Taskin-tok 0000-0002-0064-8400

Ayse Uzgoren-baran Bu kişi benim 0000-0003-1405-2920

Yayımlanma Tarihi 18 Eylül 2019
Kabul Tarihi 29 Mart 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 47 Sayı: 2

Kaynak Göster

APA Akbay, N., Koksal, Z., Taskin-tok, T., Uzgoren-baran, A. (2019). Naproxen Derivative Interaction Properties with ct-DNA. Hacettepe Journal of Biology and Chemistry, 47(2), 177-184. https://doi.org/10.15671/hjbc.517481
AMA Akbay N, Koksal Z, Taskin-tok T, Uzgoren-baran A. Naproxen Derivative Interaction Properties with ct-DNA. HJBC. Eylül 2019;47(2):177-184. doi:10.15671/hjbc.517481
Chicago Akbay, Nuriye, Zeynep Koksal, Tugba Taskin-tok, ve Ayse Uzgoren-baran. “Naproxen Derivative Interaction Properties With Ct-DNA”. Hacettepe Journal of Biology and Chemistry 47, sy. 2 (Eylül 2019): 177-84. https://doi.org/10.15671/hjbc.517481.
EndNote Akbay N, Koksal Z, Taskin-tok T, Uzgoren-baran A (01 Eylül 2019) Naproxen Derivative Interaction Properties with ct-DNA. Hacettepe Journal of Biology and Chemistry 47 2 177–184.
IEEE N. Akbay, Z. Koksal, T. Taskin-tok, ve A. Uzgoren-baran, “Naproxen Derivative Interaction Properties with ct-DNA”, HJBC, c. 47, sy. 2, ss. 177–184, 2019, doi: 10.15671/hjbc.517481.
ISNAD Akbay, Nuriye vd. “Naproxen Derivative Interaction Properties With Ct-DNA”. Hacettepe Journal of Biology and Chemistry 47/2 (Eylül 2019), 177-184. https://doi.org/10.15671/hjbc.517481.
JAMA Akbay N, Koksal Z, Taskin-tok T, Uzgoren-baran A. Naproxen Derivative Interaction Properties with ct-DNA. HJBC. 2019;47:177–184.
MLA Akbay, Nuriye vd. “Naproxen Derivative Interaction Properties With Ct-DNA”. Hacettepe Journal of Biology and Chemistry, c. 47, sy. 2, 2019, ss. 177-84, doi:10.15671/hjbc.517481.
Vancouver Akbay N, Koksal Z, Taskin-tok T, Uzgoren-baran A. Naproxen Derivative Interaction Properties with ct-DNA. HJBC. 2019;47(2):177-84.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc