Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2020, Cilt: 48 Sayı: 2, 99 - 118, 19.04.2020
https://doi.org/10.15671/hjbc.629355

Öz

Kaynakça

  • 1. S. Hajizadeh, H. Kirsebom B. Mattiasson, Characterization of macroporous carbon-cryostructured particle gel, an adsorbent for small organic molecules, Soft. Matter., 6 (2010) 5562–5569.
  • 2. P. Persson, O. Baybak, F. Plieva, I.Y. Galaev, B. Mattiasson, B. Nilsson, A. Axelsson, Characterization of a continuous supermacroporous monolithic matrix for chromatographic separation of large bioparticles, Biotechnol. Bioeng. 88(2) 2004 224-236.
  • 3. V.M. Gun'ko, I.N. Savina, S.V. Mikhalovsky, Cryogels: Morphological, structural and adsorption characterization, Adv. Colloid Interface Sci., 187–188 2013 1–46.
  • 4. D.B; Raina, A. Kumar, Cryogels and related research: a glance over the past few decades in super macroporous cryogels, ed A. Kumar, CRC Press, 2016 3-34.
  • 5. K. Cetin, A. Denizli 5-Fluorouracil delivery from metal-ion mediated molecularly imprinted cryogel discs, Colloid. Surface. B., 126 2015 401–406.
  • 6. T.M.A. Henderson, K. Ladewig, D.N. Haylock, K.M. McLean, A.J. O'Connor, Cryogels for biomedical applications, J. Mater. Chem. B., 1 2013 2682-2695.
  • 7. N.S. Bibi, N.K. Singh, R.N. Dsouza, M. Aasim, M.F. Lahore, Synthesis and performance of megaporous immobilized metal-ion affinity cryogels for recombinant protein capture and purification, J. Chromatogr. A., 1272 2013 145–149.
  • 8. A. Fatoni, A. Numnuam, P. Kanatharana, W. Limbut, P. Thavarungkul, A novel molecularly imprinted chitosan– acrylamide, graphene, ferrocene composite cryogel biosensor used to detect microalbumin, Analyst., 139 2014 6160-6167.
  • 9. S.P. Tao, C. Wang, Y. Sun, Coating of nanoparticles on cryogel surface and subsequent double-modification for enhanced ion-exchange capacity of protein, J. Chromatog. A., 1359 2014 76–83.
  • 10. M. Andaç, G. Baydemir, H. Yavuz, A. Denizli, Molecularly imprinted composite cryogel for albumin depletion from human serum, J. Mol. Recognit., 25 2012 555–563.
  • 11. K.R. Hixon, T. Lu, S.A. Sell, A comprehensive review of cryogels and their roles in tissue engineering applications, Acta Biomater., 62 2017 29-41.
  • 12. T.M.A. Henderson, K. Ladewig, D.N. Haylock, K.M. McLean, A.J. O’Connor, Cryogels for biomedical applications, J. Mater. Chem. B, 1 2013 2682-2695.
  • 13. M. Andac, F.M. Plieva, A. Denizli, I. Y. Galaev, B. Mattiasson, Poly(hydroxyethyl methacrylate)-based macroporous hydrogels with bisulfide cross-linker, Macromol. Chem. Phys., 209 2008 577–584.
  • 14. M. Bakhshpour, N. Idil, I. Perçin, A. Denizli, Biomedical Applications of Polymeric Cryogels. Appl. Sci., 9 2019 553.
  • 15. W.P. Daley, S.B. Peters, M. Larsen, Extracellular matrix dynamics in development and regenerative medicine, J. Cell Sci., 121 2008 255-264.
  • 16. F.J. O’Brien, Biomaterials & scaffolds for tissue engineering. Mater. Today, 14(3) 2011 88-95.
  • 17. Tripathi, A.; Kathuria, N.; Kumar, A. Elastic and macroporous agarose-gelatin cryogels with isotropic and anisotropic porosity for tissue engineering. J. Biomed. Mater. Res. A, 2009.
  • 18. S. Bhat, A. Tripathi, A. Kumar, Supermacroprous chitosan-agarose-gelatin cryogels: In vitro characterization and in vivo assessment for cartilage tissue engineering, J. R. Soc. Interface., 8(57) 2011 540-554.
  • 19. V.I. Lozinsky, I.Y. Galaev, F.M. Plieva, I.N. Savina, H. Jungvid, B. Mattiasson, Polymeric cryogels as promising materials of biotechnological interest, Trends Biotechnol., 21 2003 445–451.
  • 20. R. Mishra, A. Kumar, Effect of plasma polymerization on physicochemical properties of biocomposite cryogels causing a differential behavior of human osteoblasts, J. Colloid Interface Sci., 431 2014 139-148.
  • 21. S. Bhat, L. Lidgren, A. Kumar, In Vitro Neo-cartilage formation on a three-dimensional composite polymeric cryogel matrix, Macromol. Biosci., 13 2013 827–837.
  • 22. A. Gupta, S. Bhat, P.R. Jagdale, B.P. Chaudhari, L. Lidgren, K.C. Gupta, A. Kumar, Evaluation of three-dimensional chitosan-agarose-gelatin cryogel scaffold for the repair of subchondral cartilage defects: an in vivo study in a rabbit model, Tissue Eng. Part A., 20 2014 3101-3111.
  • 23. R. Mishra, S.K. Goel, K.C. Gupta, A. Kumar, Biocomposite cryogels as tissue engineered biomaterials for regeneration of critical-sized cranial bone defects, Tissue Eng. Part A., 20(3-4) 2013 751-62.
  • 24. C.L. Salgado, L. Grenho, M.H. Fernandes, B.J. Colaço, F.J. Monteiro, Biodegradation, biocompatibility, and osteoconduction evaluation of collagen-nanohydroxyapatite cryogels for bone tissue regeneration, J. Biomed. Mater. Res. - Part A., 104(1) 2016 57-70.
  • 25. S.S. Suner, S. Demirci, B. Yetiskin, R. Fakhrullin, E. Naumenko, O. Okay, R.S. Ayyala, N. Sahiner, Cryogel composites based on hyaluronic acid and halloysite nanotubes as scaffold for tissue engineering, Int. J. Biol. Macromol., 130 2019 627–635.
  • 26. K.R. Hixon, C.T. Eberlin, T. Lu, S.M. Neal, N.D. Case, S.H. McBride-Gagyi, S.A. Sell, The calcification potential of cryogel scaffolds incorporated with various forms of hydroxyapatite for bone regeneration, Biomed. Mater., 12 2017 025005.
  • 27. D.B. Raina, H. Isaksson, A.K. Teotia, L. Lidgren, M. Tägil, A. Kumar, Biocomposite macroporous cryogels as potential carrier scaffolds for bone active agents augmenting bone regeneration, J. Control. Release., 235 2016 365-378.
  • 28. I.U. Allan, B.A. Tolhurst, R.V. Shevchenko, M.B. Dainiak, M. Illsley, A. Ivanov, H.; Jungvid, I.Y. Galaev, S.L. James, S.V. Mikhalovsky, S.E. James, An: In vitro evaluation of fibrinogen and gelatin containing cryogels as dermal regeneration scaffolds, Biomater. Sci., 4(6) 2016 1007-1014.
  • 29. T. Takei, H. Nakahara, S. Tanaka, H. Nishimata, M. Yoshida, K. Kawakami, Effect of chitosan-gluconic acid conjugate/poly(vinyl alcohol) cryogels as wound dressing on partial-thickness wounds in diabetic rats, J. Mater. Sci. Mater. Med., 24 2013 2479–2487.
  • 30. N. A. Temofeew, K. R. Hixon, S.H. McBride-Gagyi, S.A. Sell, The fabrication of cryogel scaffolds incorporated with poloxamer 407 for potential use in the regeneration of the nucleus pulposus. J. Mater. Sci. Mater. Med., 28(3) 2017 36.
  • 31. N.X. Wang, H.A. von Recum, Affinity‐based drug delivery, Macromol. Biosci., 11(3) 2011 321-332.
  • 32. G. P. Carino, E. Mathiowitz, Oral insulin delivery. Adv. Drug. Deliv. Rev., 35(2-3) 1999 249-257.
  • 33. V.P. Torchilin, R. Rammohan, V. Weissig, T.S. Levchenko, Tat peptide on the surface of liposomes affords their efficient intracellular delivery even at low temperature and in the presence of metabolic inhibitors, Proc. Natl. Acad. Sci. U.S.A., 98(15) 2001 8786-8791.
  • 34. K.E. Uhrich, S.M. Cannizzaro, R.S. Langer, K.M. Shakesheff, Polymeric systems for controlled drug release, Chem. Rev. 99(11) 1999 3181-3198.
  • 35. J. Kopeček, J. Yang, Hydrogels as smart biomaterials, Polymer International, 2007, 56(9), 1078-1098.
  • 36. K. Cetin, H. Alkan, N. Bereli, A. Denizli, Molecularly imprinted cryogel as a pH-responsive delivery system for doxorubicin, J. Macromol. Sci., Part A., 54 2017 502-508.
  • 37. M.A. Ward, T.K. Georgiou, Thermoresponsive polymers for biomedical applications, Polymers (Basel). 3 2011 1215–1242.
  • 38. W. Zhu, H. Peng, M. Luo, N. Yu, H.; Xiong, R. Wang, Y. Li, Zipper-like magnetic molecularly imprinted microspheres for on/off-switchable recognition and extraction of 17β-estradiol from food samples, Food Chem., 261 2018 87–95.
  • 39. K. Sawahata, M. Hara, H. Yasunaga, Y. Osada, Electrically controlled drug delivery system using polyelectrolyte gels, J. Controlled Release., 14 1990 253–262.
  • 40. I.C. Kwon, Y.H. Bae, T. Okano, S.W. Kim, Drug release from electric current sensitive polymers, J. Controlled Release., 17 1991 149–156.
  • 41. M. Bakhshpour, H. Yavuz, A. Denizli, Controlled release of mitomycin C from PHEMAH–Cu(II) cryogel membranes, Artif. Cells. Nanomed. Biotechnol., 46 2018 946-954ç
  • 42. D.R. Kryscio, N.A. Peppas, Critical review and perspective of macromolecularly imprinted polymers. Acta Biomater. 8(2) 2012 461−473.
  • 43. A. Luchini, D.H. Geho, B. Bishop, D. Tran, C. Xia, R.L. Dufour, C.D. Jones, V.; Espina, A. Patanarut, W. Zhou, M.M. Ross, A. Tessitore, E.F. Petricoin, L.A. Liotta, Smart Hydrogel Particles: Biomarker Harvesting, One-Step Affinity Purification, Size Exclusion, and Protection against Degradation, Nano. Lett., 8(1) 2008 350−361.
  • 44. J.M. Knipe, F. Chen, N.A. Peppas, Enzymatic biodegradation of hydrogels for protein delivery targeted to the small intestine, Biomacromol., 16(3) 2015 962−972.
  • 45. C.E. Brubaker, P.B. Messersmith, Enzymatically degradable mussel-inspired adhesive hydrogel, Biomacromol., 12(12) 2011 4326−4334.
  • 46. A. Mamada, T. Tanaka, D. Kungwachakun, M. Irie, Photo induced phase transition of gels, Macromol. 23 1990 1517–1519.
  • 47. J. Kost, R. Langer, Responsive polymeric delivery systems, Adv. Drug Deliv. Rev., 64 2012 327-341.
  • 48. M.V. Dinu, A.I. Cocarta, E.S. Dragan, Synthesis, characterization and drug release properties of 3Dchitosan/clinoptilolite biocomposite cryogels, Carbohyd. Poly., 153 2016 203–211.
  • 49. E. Tamahkar, M. Bakhshpour, A. Denizli, Molecularly imprinted composite bacterial cellulose nanofibers for antibiotic release, J Biomater Sci Polym Ed Title(s), 6 2019 450-461.
  • 50. M. Caka, T. Ceren, D.A. Uygun, M. Uygun, S. Akgöl, A. Denizli, Controlled release of curcumin from poly(HEMA-MAPA) membrane, Artif. Cells Nanomed. Biotechnol., 45 2017 426-431.
  • 51. B. Kostova, D. Momekova, P. Petrov, G. Momekov, N. Toncheva-Moncheva, C.B. Tsvetanov, N. Lambov, Poly(ethoxytriethyleneglycol acrylate) cryogels as novel sustained drug release systems for oral application, Polymer.
  • 52 2011 1217-1222.52. I. Gokturk, A. Derazshamshir, F. Yılmaz, A. Denizli, Poly(vinyl alcohol)/polyethyleneimine (PVA/PEI) blended monolithic cryogel columns for the depletion of haemoglobin from human blood, Sep. Sci. Technol, 51 2016 1787-1797.
  • 53. C. Yang, Y. Zhang, W.Q. Cao, X.F. Ji J. Wang, Y.N. Yan, T.L. Zhong, Y. Wang, Synthesis of molecularly imprinted cryogels to deplete abundant proteins from bovine serum, Polymers., 10 2018 97.
  • 54. J.X. Yun, G.R. Jespersen, H. Kirsebom, P.E. Gustavsson, B. Mattiasson, I.Y. Galaev, An improved capillary model for describing the microstructure characteristics, fluid hydrodynamics and breakthrough performance of proteins in cryogel beds, J. Chromatogr. A. 1218 2011 5487-5497.
  • 55. R.D. Arrua, C.I.A. Igarzabal, Macroporous monolithic supports for affinity chromatography, J. Sep. Sci., 34 2011 1974–1987.
  • 56. S. Sun, Y. Tang, Q. Fu, X. Liu, L. Guo, Y. Zhao, C. Chang, Monolithic cryogels made of agarose–chitosan composite and loaded with agarose beads for purification of immunoglobulin G, Int. J. Biol. Macromol., 50 2012 1002– 1007.
  • 57. M. Bakhshpour, N. Bereli, S. Şenel, Preparation and characterization of thiophilic cryogels with 2-mercapto ethanol as the ligand for IgG purification. Colloid. Surface. B., 113 2014 261-268.
  • 58. M. Bakhshpour, A. Derazshamshir, N. Bereli, A. Elkak, A. Denizli, [PHEMA/PEI]–Cu(II) based immobilized metal affinity chromatography cryogels: Application on the separation of IgG from human plasma, Materials Science and Engineering: C., 61 2016 824-831.
  • 59. Y. Saylan, N. Bereli, L. Uzun, A. Denizli, Monolithic boronate affinity columns for IgG separation, Sep. Sci. Technol., 49 2014 1555–1565.
  • 60. C. Yang, X.L. Zhou, Y.R. Liu, Y. Zhang, J. Wang, L.L. Tian Y.N. Yan, Extensive imprinting adaptability of polyacrylamide based amphoteric cryogels against protein molecules, Chin. J. Anal. Chem., 44(9) 2016 1322–1327.
  • 61. S. Zhao, D. Wang, S. Zhu, X. Liu, H. Zhang, 3D cryogel composites as adsorbent for isolation of protein and small molecules, Talanta., 191 2019 229–234.
  • 62. M. Andaç, A. Denizli, Affinity-recognition-based polymeric cryogels for protein depletion studies, RSC Adv., 4(59) 2014 31130-31141.
  • 63. M. Andaç, I.Y. Galaev, A. Denizli, Affinity based and molecularly imprinted cryogels: Applications in biomacromolecule purification, J. Chromatogr. B., 1021 2016 69–80.
  • 64. M. Andac, I.Y. Galaev, A. Denizli, Molecularly Imprinted Cryogels for Protein Purification: Chapter 22., In Biomaterials from Nature for Advanced Devices and Therapies, Eds: Nuno M. Neves, Rui L. Reis; Wiley, USA ISBN: 978-1-118-47805-9. 2016 403-428.
  • 65. H. Alkan, N. Bereli, Z. Baysal, A. Denizli, Selective removal of the autoantibodies from rheumatoid arthritis patient plasma using protein A carrying affinity cryogels, Biochem. Eng. J., 51 2010 153–159.
  • 66. I. Perçin, G. Baydemir, B. Ergün, A. Denizli, Macroporous PHEMA-based cryogel discs for bilirubin removal, Artif. Cell. Nanomed. B., 41 2013 172–177.
  • 67. W. Akande, L. Mikhalovska, S. James, S. Mikhalovsky, Affinity binding macroporous monolithic cryogel as a matrix for extracorporeal apheresis medical devices, Int. J. Biomed. Mater. Res., 3(5) 2015 56-63.
  • 68. C. Yang, Y. Zhang, W.Q. Cao, X.F. Ji, J. Wang, Y.N. Yan, T.L. Zhong, Y., Wang, Synthesis of molecularly imprinted cryogels to deplete abundant proteins from bovine serum, Polymer., 10 2018 97.
  • 69. K. Zhao, T. Chen, B. Lin, W. Cui, B. Kan, N. Yang, X. Zhou, X. Zhang, K, J., Wei, Adsorption and recognition of protein molecular imprinted calcium alginate/polyacrylamide hydrogel film with good regeneration performance and high toughness, React. Funct. Polym., 87 2015 7–14.
  • 70. C. Yang, Y.R. Liu, Y. Zhang, J. Wang, L.L. Tian, Y.N. Yan, W.Q. Cao, Y.Y. Wang, Depletion of abundant human serum proteins by per se imprinted cryogels based on sample heterogeneity, Proteomics., 17(9) 2017, 1600284.
  • 71. C. Yang, X.L. Zhou, Y.R. Liu, J. Wang, L.L. Tian, Y. Zhang, X.Y. Hu, Charged groups synergically enhance protein imprinting in amphoteric polyacrylamide cryogels, J. Appl. Polym. Sci., 113(34) 2016 43851.
  • 72. M.E. Çorman, C. Armutcu, S. Özkara, L. Uzun, A. Denizli, Molecularly imprinted cryogel cartridges for the specific filtration and rapid separation of interferon alpha, RSC Adv., 5 2015 45015.
  • 73. G. Baydemir, M. Andaç, I. Perçin, A. Derazshamshir, A. Denizli, Molecularly imprinted composite cryogels for hemoglobin depletion from human blood, J. Mol. Recognit., 27 2014 528–536.
  • 74. G. Baydemir, E.A. Türkoğlu, M. Andaç, I. Perçin, A. Denizli, Composite cryogels for lysozyme purification, Biotechnol. Appl. Biochem., 62 2015 200-207.
  • 75. M. Andaç, G. Baydemir, H. Yavuz, A. Denizli, Molecularly imprinted composite cryogel for albumin depletion from human serum, J. Mol. Recognit., Special Issue 2012 555-563.
  • 76. M. Andaç, I.Y. Galaev, A. Denizli, Molecularly imprinted poly(hydroxyethyl methacrylate) based cryogel for albumin depletion from human serum, Colloid. Surface. B., 2013 259-265.
  • 77. M. Andac, F. M. Plieva, A. Denizli, I. Yu. Galaev, B. Mattiasson, Poly(hydroxyethyl methacrylate)‐based macroporous hydrogels with disulfide cross‐linker, Macromol. Chem. Phys., 209 2008 577-584.

Versatile polymeric cryogels and their biomedical applications

Yıl 2020, Cilt: 48 Sayı: 2, 99 - 118, 19.04.2020
https://doi.org/10.15671/hjbc.629355

Öz

Cryogels are interconnected
macroporous materials, which are synthesized under semi-frozen conditions. They
can be either produced as pure polymeric or composite, that can find a variety
of applications in several research field. The excellent features of composite
cryogels such as, biocompatibility, physical resistance and sensitivity, making
them extremely suitable for biomedical applications. They commonly take place
in therapeutic, diagnostic and pharmaceutical applications in the field
biomedical research. This review focuses on the biomedical applications of
composite cryogels, particularly in the field of tissue engineering, drug
delivery systems and protein diagnosis.

Kaynakça

  • 1. S. Hajizadeh, H. Kirsebom B. Mattiasson, Characterization of macroporous carbon-cryostructured particle gel, an adsorbent for small organic molecules, Soft. Matter., 6 (2010) 5562–5569.
  • 2. P. Persson, O. Baybak, F. Plieva, I.Y. Galaev, B. Mattiasson, B. Nilsson, A. Axelsson, Characterization of a continuous supermacroporous monolithic matrix for chromatographic separation of large bioparticles, Biotechnol. Bioeng. 88(2) 2004 224-236.
  • 3. V.M. Gun'ko, I.N. Savina, S.V. Mikhalovsky, Cryogels: Morphological, structural and adsorption characterization, Adv. Colloid Interface Sci., 187–188 2013 1–46.
  • 4. D.B; Raina, A. Kumar, Cryogels and related research: a glance over the past few decades in super macroporous cryogels, ed A. Kumar, CRC Press, 2016 3-34.
  • 5. K. Cetin, A. Denizli 5-Fluorouracil delivery from metal-ion mediated molecularly imprinted cryogel discs, Colloid. Surface. B., 126 2015 401–406.
  • 6. T.M.A. Henderson, K. Ladewig, D.N. Haylock, K.M. McLean, A.J. O'Connor, Cryogels for biomedical applications, J. Mater. Chem. B., 1 2013 2682-2695.
  • 7. N.S. Bibi, N.K. Singh, R.N. Dsouza, M. Aasim, M.F. Lahore, Synthesis and performance of megaporous immobilized metal-ion affinity cryogels for recombinant protein capture and purification, J. Chromatogr. A., 1272 2013 145–149.
  • 8. A. Fatoni, A. Numnuam, P. Kanatharana, W. Limbut, P. Thavarungkul, A novel molecularly imprinted chitosan– acrylamide, graphene, ferrocene composite cryogel biosensor used to detect microalbumin, Analyst., 139 2014 6160-6167.
  • 9. S.P. Tao, C. Wang, Y. Sun, Coating of nanoparticles on cryogel surface and subsequent double-modification for enhanced ion-exchange capacity of protein, J. Chromatog. A., 1359 2014 76–83.
  • 10. M. Andaç, G. Baydemir, H. Yavuz, A. Denizli, Molecularly imprinted composite cryogel for albumin depletion from human serum, J. Mol. Recognit., 25 2012 555–563.
  • 11. K.R. Hixon, T. Lu, S.A. Sell, A comprehensive review of cryogels and their roles in tissue engineering applications, Acta Biomater., 62 2017 29-41.
  • 12. T.M.A. Henderson, K. Ladewig, D.N. Haylock, K.M. McLean, A.J. O’Connor, Cryogels for biomedical applications, J. Mater. Chem. B, 1 2013 2682-2695.
  • 13. M. Andac, F.M. Plieva, A. Denizli, I. Y. Galaev, B. Mattiasson, Poly(hydroxyethyl methacrylate)-based macroporous hydrogels with bisulfide cross-linker, Macromol. Chem. Phys., 209 2008 577–584.
  • 14. M. Bakhshpour, N. Idil, I. Perçin, A. Denizli, Biomedical Applications of Polymeric Cryogels. Appl. Sci., 9 2019 553.
  • 15. W.P. Daley, S.B. Peters, M. Larsen, Extracellular matrix dynamics in development and regenerative medicine, J. Cell Sci., 121 2008 255-264.
  • 16. F.J. O’Brien, Biomaterials & scaffolds for tissue engineering. Mater. Today, 14(3) 2011 88-95.
  • 17. Tripathi, A.; Kathuria, N.; Kumar, A. Elastic and macroporous agarose-gelatin cryogels with isotropic and anisotropic porosity for tissue engineering. J. Biomed. Mater. Res. A, 2009.
  • 18. S. Bhat, A. Tripathi, A. Kumar, Supermacroprous chitosan-agarose-gelatin cryogels: In vitro characterization and in vivo assessment for cartilage tissue engineering, J. R. Soc. Interface., 8(57) 2011 540-554.
  • 19. V.I. Lozinsky, I.Y. Galaev, F.M. Plieva, I.N. Savina, H. Jungvid, B. Mattiasson, Polymeric cryogels as promising materials of biotechnological interest, Trends Biotechnol., 21 2003 445–451.
  • 20. R. Mishra, A. Kumar, Effect of plasma polymerization on physicochemical properties of biocomposite cryogels causing a differential behavior of human osteoblasts, J. Colloid Interface Sci., 431 2014 139-148.
  • 21. S. Bhat, L. Lidgren, A. Kumar, In Vitro Neo-cartilage formation on a three-dimensional composite polymeric cryogel matrix, Macromol. Biosci., 13 2013 827–837.
  • 22. A. Gupta, S. Bhat, P.R. Jagdale, B.P. Chaudhari, L. Lidgren, K.C. Gupta, A. Kumar, Evaluation of three-dimensional chitosan-agarose-gelatin cryogel scaffold for the repair of subchondral cartilage defects: an in vivo study in a rabbit model, Tissue Eng. Part A., 20 2014 3101-3111.
  • 23. R. Mishra, S.K. Goel, K.C. Gupta, A. Kumar, Biocomposite cryogels as tissue engineered biomaterials for regeneration of critical-sized cranial bone defects, Tissue Eng. Part A., 20(3-4) 2013 751-62.
  • 24. C.L. Salgado, L. Grenho, M.H. Fernandes, B.J. Colaço, F.J. Monteiro, Biodegradation, biocompatibility, and osteoconduction evaluation of collagen-nanohydroxyapatite cryogels for bone tissue regeneration, J. Biomed. Mater. Res. - Part A., 104(1) 2016 57-70.
  • 25. S.S. Suner, S. Demirci, B. Yetiskin, R. Fakhrullin, E. Naumenko, O. Okay, R.S. Ayyala, N. Sahiner, Cryogel composites based on hyaluronic acid and halloysite nanotubes as scaffold for tissue engineering, Int. J. Biol. Macromol., 130 2019 627–635.
  • 26. K.R. Hixon, C.T. Eberlin, T. Lu, S.M. Neal, N.D. Case, S.H. McBride-Gagyi, S.A. Sell, The calcification potential of cryogel scaffolds incorporated with various forms of hydroxyapatite for bone regeneration, Biomed. Mater., 12 2017 025005.
  • 27. D.B. Raina, H. Isaksson, A.K. Teotia, L. Lidgren, M. Tägil, A. Kumar, Biocomposite macroporous cryogels as potential carrier scaffolds for bone active agents augmenting bone regeneration, J. Control. Release., 235 2016 365-378.
  • 28. I.U. Allan, B.A. Tolhurst, R.V. Shevchenko, M.B. Dainiak, M. Illsley, A. Ivanov, H.; Jungvid, I.Y. Galaev, S.L. James, S.V. Mikhalovsky, S.E. James, An: In vitro evaluation of fibrinogen and gelatin containing cryogels as dermal regeneration scaffolds, Biomater. Sci., 4(6) 2016 1007-1014.
  • 29. T. Takei, H. Nakahara, S. Tanaka, H. Nishimata, M. Yoshida, K. Kawakami, Effect of chitosan-gluconic acid conjugate/poly(vinyl alcohol) cryogels as wound dressing on partial-thickness wounds in diabetic rats, J. Mater. Sci. Mater. Med., 24 2013 2479–2487.
  • 30. N. A. Temofeew, K. R. Hixon, S.H. McBride-Gagyi, S.A. Sell, The fabrication of cryogel scaffolds incorporated with poloxamer 407 for potential use in the regeneration of the nucleus pulposus. J. Mater. Sci. Mater. Med., 28(3) 2017 36.
  • 31. N.X. Wang, H.A. von Recum, Affinity‐based drug delivery, Macromol. Biosci., 11(3) 2011 321-332.
  • 32. G. P. Carino, E. Mathiowitz, Oral insulin delivery. Adv. Drug. Deliv. Rev., 35(2-3) 1999 249-257.
  • 33. V.P. Torchilin, R. Rammohan, V. Weissig, T.S. Levchenko, Tat peptide on the surface of liposomes affords their efficient intracellular delivery even at low temperature and in the presence of metabolic inhibitors, Proc. Natl. Acad. Sci. U.S.A., 98(15) 2001 8786-8791.
  • 34. K.E. Uhrich, S.M. Cannizzaro, R.S. Langer, K.M. Shakesheff, Polymeric systems for controlled drug release, Chem. Rev. 99(11) 1999 3181-3198.
  • 35. J. Kopeček, J. Yang, Hydrogels as smart biomaterials, Polymer International, 2007, 56(9), 1078-1098.
  • 36. K. Cetin, H. Alkan, N. Bereli, A. Denizli, Molecularly imprinted cryogel as a pH-responsive delivery system for doxorubicin, J. Macromol. Sci., Part A., 54 2017 502-508.
  • 37. M.A. Ward, T.K. Georgiou, Thermoresponsive polymers for biomedical applications, Polymers (Basel). 3 2011 1215–1242.
  • 38. W. Zhu, H. Peng, M. Luo, N. Yu, H.; Xiong, R. Wang, Y. Li, Zipper-like magnetic molecularly imprinted microspheres for on/off-switchable recognition and extraction of 17β-estradiol from food samples, Food Chem., 261 2018 87–95.
  • 39. K. Sawahata, M. Hara, H. Yasunaga, Y. Osada, Electrically controlled drug delivery system using polyelectrolyte gels, J. Controlled Release., 14 1990 253–262.
  • 40. I.C. Kwon, Y.H. Bae, T. Okano, S.W. Kim, Drug release from electric current sensitive polymers, J. Controlled Release., 17 1991 149–156.
  • 41. M. Bakhshpour, H. Yavuz, A. Denizli, Controlled release of mitomycin C from PHEMAH–Cu(II) cryogel membranes, Artif. Cells. Nanomed. Biotechnol., 46 2018 946-954ç
  • 42. D.R. Kryscio, N.A. Peppas, Critical review and perspective of macromolecularly imprinted polymers. Acta Biomater. 8(2) 2012 461−473.
  • 43. A. Luchini, D.H. Geho, B. Bishop, D. Tran, C. Xia, R.L. Dufour, C.D. Jones, V.; Espina, A. Patanarut, W. Zhou, M.M. Ross, A. Tessitore, E.F. Petricoin, L.A. Liotta, Smart Hydrogel Particles: Biomarker Harvesting, One-Step Affinity Purification, Size Exclusion, and Protection against Degradation, Nano. Lett., 8(1) 2008 350−361.
  • 44. J.M. Knipe, F. Chen, N.A. Peppas, Enzymatic biodegradation of hydrogels for protein delivery targeted to the small intestine, Biomacromol., 16(3) 2015 962−972.
  • 45. C.E. Brubaker, P.B. Messersmith, Enzymatically degradable mussel-inspired adhesive hydrogel, Biomacromol., 12(12) 2011 4326−4334.
  • 46. A. Mamada, T. Tanaka, D. Kungwachakun, M. Irie, Photo induced phase transition of gels, Macromol. 23 1990 1517–1519.
  • 47. J. Kost, R. Langer, Responsive polymeric delivery systems, Adv. Drug Deliv. Rev., 64 2012 327-341.
  • 48. M.V. Dinu, A.I. Cocarta, E.S. Dragan, Synthesis, characterization and drug release properties of 3Dchitosan/clinoptilolite biocomposite cryogels, Carbohyd. Poly., 153 2016 203–211.
  • 49. E. Tamahkar, M. Bakhshpour, A. Denizli, Molecularly imprinted composite bacterial cellulose nanofibers for antibiotic release, J Biomater Sci Polym Ed Title(s), 6 2019 450-461.
  • 50. M. Caka, T. Ceren, D.A. Uygun, M. Uygun, S. Akgöl, A. Denizli, Controlled release of curcumin from poly(HEMA-MAPA) membrane, Artif. Cells Nanomed. Biotechnol., 45 2017 426-431.
  • 51. B. Kostova, D. Momekova, P. Petrov, G. Momekov, N. Toncheva-Moncheva, C.B. Tsvetanov, N. Lambov, Poly(ethoxytriethyleneglycol acrylate) cryogels as novel sustained drug release systems for oral application, Polymer.
  • 52 2011 1217-1222.52. I. Gokturk, A. Derazshamshir, F. Yılmaz, A. Denizli, Poly(vinyl alcohol)/polyethyleneimine (PVA/PEI) blended monolithic cryogel columns for the depletion of haemoglobin from human blood, Sep. Sci. Technol, 51 2016 1787-1797.
  • 53. C. Yang, Y. Zhang, W.Q. Cao, X.F. Ji J. Wang, Y.N. Yan, T.L. Zhong, Y. Wang, Synthesis of molecularly imprinted cryogels to deplete abundant proteins from bovine serum, Polymers., 10 2018 97.
  • 54. J.X. Yun, G.R. Jespersen, H. Kirsebom, P.E. Gustavsson, B. Mattiasson, I.Y. Galaev, An improved capillary model for describing the microstructure characteristics, fluid hydrodynamics and breakthrough performance of proteins in cryogel beds, J. Chromatogr. A. 1218 2011 5487-5497.
  • 55. R.D. Arrua, C.I.A. Igarzabal, Macroporous monolithic supports for affinity chromatography, J. Sep. Sci., 34 2011 1974–1987.
  • 56. S. Sun, Y. Tang, Q. Fu, X. Liu, L. Guo, Y. Zhao, C. Chang, Monolithic cryogels made of agarose–chitosan composite and loaded with agarose beads for purification of immunoglobulin G, Int. J. Biol. Macromol., 50 2012 1002– 1007.
  • 57. M. Bakhshpour, N. Bereli, S. Şenel, Preparation and characterization of thiophilic cryogels with 2-mercapto ethanol as the ligand for IgG purification. Colloid. Surface. B., 113 2014 261-268.
  • 58. M. Bakhshpour, A. Derazshamshir, N. Bereli, A. Elkak, A. Denizli, [PHEMA/PEI]–Cu(II) based immobilized metal affinity chromatography cryogels: Application on the separation of IgG from human plasma, Materials Science and Engineering: C., 61 2016 824-831.
  • 59. Y. Saylan, N. Bereli, L. Uzun, A. Denizli, Monolithic boronate affinity columns for IgG separation, Sep. Sci. Technol., 49 2014 1555–1565.
  • 60. C. Yang, X.L. Zhou, Y.R. Liu, Y. Zhang, J. Wang, L.L. Tian Y.N. Yan, Extensive imprinting adaptability of polyacrylamide based amphoteric cryogels against protein molecules, Chin. J. Anal. Chem., 44(9) 2016 1322–1327.
  • 61. S. Zhao, D. Wang, S. Zhu, X. Liu, H. Zhang, 3D cryogel composites as adsorbent for isolation of protein and small molecules, Talanta., 191 2019 229–234.
  • 62. M. Andaç, A. Denizli, Affinity-recognition-based polymeric cryogels for protein depletion studies, RSC Adv., 4(59) 2014 31130-31141.
  • 63. M. Andaç, I.Y. Galaev, A. Denizli, Affinity based and molecularly imprinted cryogels: Applications in biomacromolecule purification, J. Chromatogr. B., 1021 2016 69–80.
  • 64. M. Andac, I.Y. Galaev, A. Denizli, Molecularly Imprinted Cryogels for Protein Purification: Chapter 22., In Biomaterials from Nature for Advanced Devices and Therapies, Eds: Nuno M. Neves, Rui L. Reis; Wiley, USA ISBN: 978-1-118-47805-9. 2016 403-428.
  • 65. H. Alkan, N. Bereli, Z. Baysal, A. Denizli, Selective removal of the autoantibodies from rheumatoid arthritis patient plasma using protein A carrying affinity cryogels, Biochem. Eng. J., 51 2010 153–159.
  • 66. I. Perçin, G. Baydemir, B. Ergün, A. Denizli, Macroporous PHEMA-based cryogel discs for bilirubin removal, Artif. Cell. Nanomed. B., 41 2013 172–177.
  • 67. W. Akande, L. Mikhalovska, S. James, S. Mikhalovsky, Affinity binding macroporous monolithic cryogel as a matrix for extracorporeal apheresis medical devices, Int. J. Biomed. Mater. Res., 3(5) 2015 56-63.
  • 68. C. Yang, Y. Zhang, W.Q. Cao, X.F. Ji, J. Wang, Y.N. Yan, T.L. Zhong, Y., Wang, Synthesis of molecularly imprinted cryogels to deplete abundant proteins from bovine serum, Polymer., 10 2018 97.
  • 69. K. Zhao, T. Chen, B. Lin, W. Cui, B. Kan, N. Yang, X. Zhou, X. Zhang, K, J., Wei, Adsorption and recognition of protein molecular imprinted calcium alginate/polyacrylamide hydrogel film with good regeneration performance and high toughness, React. Funct. Polym., 87 2015 7–14.
  • 70. C. Yang, Y.R. Liu, Y. Zhang, J. Wang, L.L. Tian, Y.N. Yan, W.Q. Cao, Y.Y. Wang, Depletion of abundant human serum proteins by per se imprinted cryogels based on sample heterogeneity, Proteomics., 17(9) 2017, 1600284.
  • 71. C. Yang, X.L. Zhou, Y.R. Liu, J. Wang, L.L. Tian, Y. Zhang, X.Y. Hu, Charged groups synergically enhance protein imprinting in amphoteric polyacrylamide cryogels, J. Appl. Polym. Sci., 113(34) 2016 43851.
  • 72. M.E. Çorman, C. Armutcu, S. Özkara, L. Uzun, A. Denizli, Molecularly imprinted cryogel cartridges for the specific filtration and rapid separation of interferon alpha, RSC Adv., 5 2015 45015.
  • 73. G. Baydemir, M. Andaç, I. Perçin, A. Derazshamshir, A. Denizli, Molecularly imprinted composite cryogels for hemoglobin depletion from human blood, J. Mol. Recognit., 27 2014 528–536.
  • 74. G. Baydemir, E.A. Türkoğlu, M. Andaç, I. Perçin, A. Denizli, Composite cryogels for lysozyme purification, Biotechnol. Appl. Biochem., 62 2015 200-207.
  • 75. M. Andaç, G. Baydemir, H. Yavuz, A. Denizli, Molecularly imprinted composite cryogel for albumin depletion from human serum, J. Mol. Recognit., Special Issue 2012 555-563.
  • 76. M. Andaç, I.Y. Galaev, A. Denizli, Molecularly imprinted poly(hydroxyethyl methacrylate) based cryogel for albumin depletion from human serum, Colloid. Surface. B., 2013 259-265.
  • 77. M. Andac, F. M. Plieva, A. Denizli, I. Yu. Galaev, B. Mattiasson, Poly(hydroxyethyl methacrylate)‐based macroporous hydrogels with disulfide cross‐linker, Macromol. Chem. Phys., 209 2008 577-584.
Toplam 77 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Articles
Yazarlar

Semra Akgönüllü Bu kişi benim 0000-0003-2245-8074

Monireh Bakhshpour 0000-0002-5737-720X

Neslihan İdil 0000-0002-6540-540X

Müge Andaç Bu kişi benim 0000-0003-0074-6294

Handan Yavuz 0000-0001-5454-7624

Adil Denizli 0000-0001-7548-5741

Yayımlanma Tarihi 19 Nisan 2020
Kabul Tarihi 20 Nisan 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 48 Sayı: 2

Kaynak Göster

APA Akgönüllü, S., Bakhshpour, M., İdil, N., Andaç, M., vd. (2020). Versatile polymeric cryogels and their biomedical applications. Hacettepe Journal of Biology and Chemistry, 48(2), 99-118. https://doi.org/10.15671/hjbc.629355
AMA Akgönüllü S, Bakhshpour M, İdil N, Andaç M, Yavuz H, Denizli A. Versatile polymeric cryogels and their biomedical applications. HJBC. Nisan 2020;48(2):99-118. doi:10.15671/hjbc.629355
Chicago Akgönüllü, Semra, Monireh Bakhshpour, Neslihan İdil, Müge Andaç, Handan Yavuz, ve Adil Denizli. “Versatile Polymeric Cryogels and Their Biomedical Applications”. Hacettepe Journal of Biology and Chemistry 48, sy. 2 (Nisan 2020): 99-118. https://doi.org/10.15671/hjbc.629355.
EndNote Akgönüllü S, Bakhshpour M, İdil N, Andaç M, Yavuz H, Denizli A (01 Nisan 2020) Versatile polymeric cryogels and their biomedical applications. Hacettepe Journal of Biology and Chemistry 48 2 99–118.
IEEE S. Akgönüllü, M. Bakhshpour, N. İdil, M. Andaç, H. Yavuz, ve A. Denizli, “Versatile polymeric cryogels and their biomedical applications”, HJBC, c. 48, sy. 2, ss. 99–118, 2020, doi: 10.15671/hjbc.629355.
ISNAD Akgönüllü, Semra vd. “Versatile Polymeric Cryogels and Their Biomedical Applications”. Hacettepe Journal of Biology and Chemistry 48/2 (Nisan 2020), 99-118. https://doi.org/10.15671/hjbc.629355.
JAMA Akgönüllü S, Bakhshpour M, İdil N, Andaç M, Yavuz H, Denizli A. Versatile polymeric cryogels and their biomedical applications. HJBC. 2020;48:99–118.
MLA Akgönüllü, Semra vd. “Versatile Polymeric Cryogels and Their Biomedical Applications”. Hacettepe Journal of Biology and Chemistry, c. 48, sy. 2, 2020, ss. 99-118, doi:10.15671/hjbc.629355.
Vancouver Akgönüllü S, Bakhshpour M, İdil N, Andaç M, Yavuz H, Denizli A. Versatile polymeric cryogels and their biomedical applications. HJBC. 2020;48(2):99-118.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc