Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2021, , 207 - 217, 17.05.2021
https://doi.org/10.15671/hjbc.667462

Öz

Kaynakça

  • 1. K. Liu, C. Pan, A. Kuhn, A.P. Nievergelt, G.E. Fantner, O. Milenkovic, Detecting topological variations of DNA at single-molecule level, Nature communications, 10 (2019) 3. 2. L.T. Sexton, L.P. Horne, S.A. Sherrill, G.W. Bishop, L.A. Baker, C.R. Martin, Resistive-pulse studies of proteins and protein/antibody complexes using a conical nanotube sensor, Journal of the American Chemical Society, 43 (2007) 13144-52. 3. A. Darvish, J.S. Lee, B. Peng, J. Saharia, R. Venkat Kalyana Sundaram, G. Goyal, Mechanical characterization of HIV1 with a solidstate nanopore sensor, Electrophoresis, 2018. 4. S. Lee, Y. Zhang, H.S. White, C.C. Harrell, C.R. Martin, Electrophoretic capture and detection of nanoparticles at the opening of a membrane pore using scanning electrochemical microscopy, Anal. Chem., 76 (2004) 6108-15. 5. G. Goyal, K.J. Freedman, M.J. Kim, Gold nanoparticle translocation dynamics and electrical detection of single particle diffusion using solid-state nanopores, Anal. Chem., 85 (2013) 8180-87. 6. C.C. Lai, C.J. Chang, Y.S. Huang, W.C. Chang, F.G. Tseng, Y.L. Chueh, Desalination of saline water by nanochannel arrays through manipulation of electrical double layer, Nano energy, 12 (2015) 394-400. 7. T. Hoenen, A. Groseth, K. Rosenke, R. J. Fischer, A. Hoenen, S.D. Judson, Nanopore sequencing as a rapidly deployable Ebola outbreak tool, Emerging infectious diseases, 22 (2016) 331. 8. A. Siria, P. Poncharal, A. L. Biance, R. Fulcrand, X. Blase, S.T. Purcell, Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube, Nature, 494 (2013) 455. 9. M.X. Quintanilla-Carvajal, B.H. Camacho-Díaz, L. S. Meraz-Torres, J.J. Chanona-Pérez, L. Alamilla-Beltrán, A. Jimenéz-Aparicio, Nanoencapsulation: a new trend in food engineering processing, Food Engineering Reviews, 2 (2010) 39-50. 10. W.H. Coulter, Means for counting particles suspended in a fluid.: US Patent 2,656,508; 1953. 11. D. Kaya, A. Dinler, N. San, K. Kececi, Effect of Pore Geometry on Resistive-Pulse Sensing of DNA Using Track-Etched PET Nanopore Membrane, Electrochimica Acta, 202 (2016) 157-65. 12. K.P. Singh, M. Kumar, Effect of gate length and dielectric thickness on ion and fluid transport in a fluidic nanochannel, Lab on a Chip, 12 (2012) 1332-9. 13. W.J. Lan, C. Kubeil, J.W. Xiong, A. Bund, H.S. White, Effect of Surface Charge on the Resistive Pulse Waveshape during Particle Translocation through Glass Nanopores, Journal of Physical Chemistry C., 118 (2014) 2726-34. 14. E. Weatherall, G.R. Willmott, Conductive and Biphasic Pulses in Tunable Resistive Pulse Sensing, The Journal of Physical Chemistry B., 119 (2015) 5328-35. 15. Y. Qiu, C. Y. Lin, P. Hinkle, T.S. Plett, C. Yang, J.V. Chacko, Highly Charged Particles Cause a Larger Current Blockage in Micropores Compared to Neutral Particles, ACS Nano, 10 (2016) 8413–22. 16. J. Menestrina, C. Yang, M. Schiel, I. Vlassiouk, Z. S. Siwy, Charged particles modulate local ionic concentrations and cause formation of positive peaks in resistive-pulse-based detection, The Journal of Physical Chemistry C., 118 (2014) 2391-8. 17. J. Cervera, B. Schiedt, R. Neumann, S. Mafé, P. Ramírez, Ionic conduction, rectification, and selectivity in single conical nanopores, The Journal of Chemical Physics, 124 (2006) 104706. 18. D. Gillespie, D. Boda, Y. He, P. Apel, Z. S. Siwy, Synthetic nanopores as a test case for ion channel theories: the anomalous mole fraction effect without single filing, Biophysical Journal, 95 (2008) 609-19. 19. Z. Siwy, P. Apel, D. Dobrev, R. Neumann, R. Spohr, C. Trautmann, Ion transport through asymmetric nanopores prepared by ion track etching, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 208 (2003) 143-8. 20. H. Zhang, X. Hou, Z. Yang, D. Yan, L. Li, Y. Tian, Bio‐inspired Smart Single Asymmetric Hourglass Nanochannels for Continuous Shape and Ion Transport Control, Small, 11 (2015) 786-91. 21. P. Y. Apel, I.V. Blonskaya, S.N. Dmitriev, O.L. Orelovitch, A. Presz, B. A. Sartowska, Fabrication of nanopores in polymer foils with surfactant-controlled longitudinal profiles, Nanotechnology, 18 (2007) 305302. 22. P. Ramírez, P. Y. Apel, J. Cervera, S. Mafé, Pore structure and function of synthetic nanopores with fixed charges: tip shape and rectification properties, Nanotechnology,19 (2008) 315707. 23. F. M. Gilles, M. Tagliazucchi, O. Azzaroni, I. Szleifer, Ionic Conductance of Polyelectrolyte-Modified Nanochannels: Nanoconfinement Effects on the Coupled Protonation Equilibria of Polyprotic Brushes, The Journal of Physical Chemistry C., 120 (2016) 4789-98. 24. K.K. Chen, L. Shan, S. Y. He, G. Q. Hu, Y. G. Meng, Y. Tian, Biphasic Resistive Pulses and Ion Concentration Modulation during Particle Translocation through Cylindrical Nanopores, Journal of Physical Chemistry C., 119 (2015) 8329-35. 25. M. Firnkes, D. Pedone, J. Knezevic, M. Döblinger, U. Rant, Electrically facilitated translocations of proteins through silicon nitride nanopores: conjoint and competitive action of diffusion, electrophoresis, and electroosmosis, Nano letters, 10 (2010) 2162-7. 26. S. Cabello-Aguilar, A. A. Chaay, M. Bechelany, C. Pochat-Bohatier, E. Balanzat, J. M. Janot, Dynamics of polymer nanoparticles through a single artificial nanopore with a high-aspect-ratio, Soft Matter, 10 (2014) 8413-9. 27. K. E. Venta, M. B. Zanjani, X. Ye, G. Danda, C. B. Murray, J. R. Lukes, Gold nanorod translocations and charge measurement through solid-state nanopores, Nano letters, 14 (2014) 5358-64. 28. D. Yilmaz, D. Kaya, K. Keçeci, A. Dinler, Effects of Nanopore Shape in Resistive-Pulse Sensing for Particle Discrimination (Submitted). 29. Y. Youn, S. Han, Investigation of field effects in a solid-state nanopore transistor, Phys. Chem. Chem. Phys., 17 (2015) 27806-11. 30. R. Vogel, G. Willmott, D. Kozak, G. S. Roberts, W. Anderson, L. Groenewegen, Quantitative sizing of nano/microparticles with a tunable elastomeric pore sensor, Anal. Chem., 83 (2011) 3499-506. 31. J. Jiang, G. Oberdörster, P. Biswas, Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies, Journal of Nanoparticle Research, 11 (2009) 77-89. 32. S. Movahed S, D. Li, Electrokinetic motion of a rectangular nanoparticle in a nanochannel, Journal of Nanoparticle Research, 14 (2012) 1032.

Effects of Asymmetric Nanopore Geometries on Nanoparticle Sensing Using Track-Etched Nanopore Membranes

Yıl 2021, , 207 - 217, 17.05.2021
https://doi.org/10.15671/hjbc.667462

Öz

Resistive pulse sensing, based on the Coulter Counter principle, is an important assay for sensing and separation processes to detect/discriminate several types of particles in various mediums. In such a set-up, attaining the signal from the smaller particles can be hard compared to larger particles. In this work, we focus on the critical role of pore shape on signal precision. We have simulated hourglass and cigar shaped nanopores to study the sensitivity for small particles. We have considered the translocation of 120 nm diameter particle by altering the surface charge as -0.001 C/m2, -0.007 C/m2 and -0.015 C/m2 under the applied potential between -0.3 V and -1 V with 0.1 increments. We have compared the signals in different concentration for identical-sized particles with varying surface charges. Comparison of pulse magnitudes and normalized current changes obtained from each pore shapes have shown that the cigar shaped pore yields more prominent signals for smaller sized particles than the hourglass pore. The results reveal that the hourglass shaped pore provides higher sensitivity than cigar shaped to discriminate the smaller particles and the hourglass pore might be preferable for nanopore sensor applications.

Kaynakça

  • 1. K. Liu, C. Pan, A. Kuhn, A.P. Nievergelt, G.E. Fantner, O. Milenkovic, Detecting topological variations of DNA at single-molecule level, Nature communications, 10 (2019) 3. 2. L.T. Sexton, L.P. Horne, S.A. Sherrill, G.W. Bishop, L.A. Baker, C.R. Martin, Resistive-pulse studies of proteins and protein/antibody complexes using a conical nanotube sensor, Journal of the American Chemical Society, 43 (2007) 13144-52. 3. A. Darvish, J.S. Lee, B. Peng, J. Saharia, R. Venkat Kalyana Sundaram, G. Goyal, Mechanical characterization of HIV1 with a solidstate nanopore sensor, Electrophoresis, 2018. 4. S. Lee, Y. Zhang, H.S. White, C.C. Harrell, C.R. Martin, Electrophoretic capture and detection of nanoparticles at the opening of a membrane pore using scanning electrochemical microscopy, Anal. Chem., 76 (2004) 6108-15. 5. G. Goyal, K.J. Freedman, M.J. Kim, Gold nanoparticle translocation dynamics and electrical detection of single particle diffusion using solid-state nanopores, Anal. Chem., 85 (2013) 8180-87. 6. C.C. Lai, C.J. Chang, Y.S. Huang, W.C. Chang, F.G. Tseng, Y.L. Chueh, Desalination of saline water by nanochannel arrays through manipulation of electrical double layer, Nano energy, 12 (2015) 394-400. 7. T. Hoenen, A. Groseth, K. Rosenke, R. J. Fischer, A. Hoenen, S.D. Judson, Nanopore sequencing as a rapidly deployable Ebola outbreak tool, Emerging infectious diseases, 22 (2016) 331. 8. A. Siria, P. Poncharal, A. L. Biance, R. Fulcrand, X. Blase, S.T. Purcell, Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube, Nature, 494 (2013) 455. 9. M.X. Quintanilla-Carvajal, B.H. Camacho-Díaz, L. S. Meraz-Torres, J.J. Chanona-Pérez, L. Alamilla-Beltrán, A. Jimenéz-Aparicio, Nanoencapsulation: a new trend in food engineering processing, Food Engineering Reviews, 2 (2010) 39-50. 10. W.H. Coulter, Means for counting particles suspended in a fluid.: US Patent 2,656,508; 1953. 11. D. Kaya, A. Dinler, N. San, K. Kececi, Effect of Pore Geometry on Resistive-Pulse Sensing of DNA Using Track-Etched PET Nanopore Membrane, Electrochimica Acta, 202 (2016) 157-65. 12. K.P. Singh, M. Kumar, Effect of gate length and dielectric thickness on ion and fluid transport in a fluidic nanochannel, Lab on a Chip, 12 (2012) 1332-9. 13. W.J. Lan, C. Kubeil, J.W. Xiong, A. Bund, H.S. White, Effect of Surface Charge on the Resistive Pulse Waveshape during Particle Translocation through Glass Nanopores, Journal of Physical Chemistry C., 118 (2014) 2726-34. 14. E. Weatherall, G.R. Willmott, Conductive and Biphasic Pulses in Tunable Resistive Pulse Sensing, The Journal of Physical Chemistry B., 119 (2015) 5328-35. 15. Y. Qiu, C. Y. Lin, P. Hinkle, T.S. Plett, C. Yang, J.V. Chacko, Highly Charged Particles Cause a Larger Current Blockage in Micropores Compared to Neutral Particles, ACS Nano, 10 (2016) 8413–22. 16. J. Menestrina, C. Yang, M. Schiel, I. Vlassiouk, Z. S. Siwy, Charged particles modulate local ionic concentrations and cause formation of positive peaks in resistive-pulse-based detection, The Journal of Physical Chemistry C., 118 (2014) 2391-8. 17. J. Cervera, B. Schiedt, R. Neumann, S. Mafé, P. Ramírez, Ionic conduction, rectification, and selectivity in single conical nanopores, The Journal of Chemical Physics, 124 (2006) 104706. 18. D. Gillespie, D. Boda, Y. He, P. Apel, Z. S. Siwy, Synthetic nanopores as a test case for ion channel theories: the anomalous mole fraction effect without single filing, Biophysical Journal, 95 (2008) 609-19. 19. Z. Siwy, P. Apel, D. Dobrev, R. Neumann, R. Spohr, C. Trautmann, Ion transport through asymmetric nanopores prepared by ion track etching, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 208 (2003) 143-8. 20. H. Zhang, X. Hou, Z. Yang, D. Yan, L. Li, Y. Tian, Bio‐inspired Smart Single Asymmetric Hourglass Nanochannels for Continuous Shape and Ion Transport Control, Small, 11 (2015) 786-91. 21. P. Y. Apel, I.V. Blonskaya, S.N. Dmitriev, O.L. Orelovitch, A. Presz, B. A. Sartowska, Fabrication of nanopores in polymer foils with surfactant-controlled longitudinal profiles, Nanotechnology, 18 (2007) 305302. 22. P. Ramírez, P. Y. Apel, J. Cervera, S. Mafé, Pore structure and function of synthetic nanopores with fixed charges: tip shape and rectification properties, Nanotechnology,19 (2008) 315707. 23. F. M. Gilles, M. Tagliazucchi, O. Azzaroni, I. Szleifer, Ionic Conductance of Polyelectrolyte-Modified Nanochannels: Nanoconfinement Effects on the Coupled Protonation Equilibria of Polyprotic Brushes, The Journal of Physical Chemistry C., 120 (2016) 4789-98. 24. K.K. Chen, L. Shan, S. Y. He, G. Q. Hu, Y. G. Meng, Y. Tian, Biphasic Resistive Pulses and Ion Concentration Modulation during Particle Translocation through Cylindrical Nanopores, Journal of Physical Chemistry C., 119 (2015) 8329-35. 25. M. Firnkes, D. Pedone, J. Knezevic, M. Döblinger, U. Rant, Electrically facilitated translocations of proteins through silicon nitride nanopores: conjoint and competitive action of diffusion, electrophoresis, and electroosmosis, Nano letters, 10 (2010) 2162-7. 26. S. Cabello-Aguilar, A. A. Chaay, M. Bechelany, C. Pochat-Bohatier, E. Balanzat, J. M. Janot, Dynamics of polymer nanoparticles through a single artificial nanopore with a high-aspect-ratio, Soft Matter, 10 (2014) 8413-9. 27. K. E. Venta, M. B. Zanjani, X. Ye, G. Danda, C. B. Murray, J. R. Lukes, Gold nanorod translocations and charge measurement through solid-state nanopores, Nano letters, 14 (2014) 5358-64. 28. D. Yilmaz, D. Kaya, K. Keçeci, A. Dinler, Effects of Nanopore Shape in Resistive-Pulse Sensing for Particle Discrimination (Submitted). 29. Y. Youn, S. Han, Investigation of field effects in a solid-state nanopore transistor, Phys. Chem. Chem. Phys., 17 (2015) 27806-11. 30. R. Vogel, G. Willmott, D. Kozak, G. S. Roberts, W. Anderson, L. Groenewegen, Quantitative sizing of nano/microparticles with a tunable elastomeric pore sensor, Anal. Chem., 83 (2011) 3499-506. 31. J. Jiang, G. Oberdörster, P. Biswas, Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies, Journal of Nanoparticle Research, 11 (2009) 77-89. 32. S. Movahed S, D. Li, Electrokinetic motion of a rectangular nanoparticle in a nanochannel, Journal of Nanoparticle Research, 14 (2012) 1032.
Toplam 1 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Research Article
Yazarlar

Dürdane Yılmaz 0000-0001-6658-1635

Dila Kaya 0000-0003-1607-5317

Kaan Keçeci 0000-0003-1554-9058

Ali Dinler 0000-0003-1104-4503

Yayımlanma Tarihi 17 Mayıs 2021
Kabul Tarihi 1 Kasım 2020
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Yılmaz, D., Kaya, D., Keçeci, K., Dinler, A. (2021). Effects of Asymmetric Nanopore Geometries on Nanoparticle Sensing Using Track-Etched Nanopore Membranes. Hacettepe Journal of Biology and Chemistry, 49(3), 207-217. https://doi.org/10.15671/hjbc.667462
AMA Yılmaz D, Kaya D, Keçeci K, Dinler A. Effects of Asymmetric Nanopore Geometries on Nanoparticle Sensing Using Track-Etched Nanopore Membranes. HJBC. Mayıs 2021;49(3):207-217. doi:10.15671/hjbc.667462
Chicago Yılmaz, Dürdane, Dila Kaya, Kaan Keçeci, ve Ali Dinler. “Effects of Asymmetric Nanopore Geometries on Nanoparticle Sensing Using Track-Etched Nanopore Membranes”. Hacettepe Journal of Biology and Chemistry 49, sy. 3 (Mayıs 2021): 207-17. https://doi.org/10.15671/hjbc.667462.
EndNote Yılmaz D, Kaya D, Keçeci K, Dinler A (01 Mayıs 2021) Effects of Asymmetric Nanopore Geometries on Nanoparticle Sensing Using Track-Etched Nanopore Membranes. Hacettepe Journal of Biology and Chemistry 49 3 207–217.
IEEE D. Yılmaz, D. Kaya, K. Keçeci, ve A. Dinler, “Effects of Asymmetric Nanopore Geometries on Nanoparticle Sensing Using Track-Etched Nanopore Membranes”, HJBC, c. 49, sy. 3, ss. 207–217, 2021, doi: 10.15671/hjbc.667462.
ISNAD Yılmaz, Dürdane vd. “Effects of Asymmetric Nanopore Geometries on Nanoparticle Sensing Using Track-Etched Nanopore Membranes”. Hacettepe Journal of Biology and Chemistry 49/3 (Mayıs 2021), 207-217. https://doi.org/10.15671/hjbc.667462.
JAMA Yılmaz D, Kaya D, Keçeci K, Dinler A. Effects of Asymmetric Nanopore Geometries on Nanoparticle Sensing Using Track-Etched Nanopore Membranes. HJBC. 2021;49:207–217.
MLA Yılmaz, Dürdane vd. “Effects of Asymmetric Nanopore Geometries on Nanoparticle Sensing Using Track-Etched Nanopore Membranes”. Hacettepe Journal of Biology and Chemistry, c. 49, sy. 3, 2021, ss. 207-1, doi:10.15671/hjbc.667462.
Vancouver Yılmaz D, Kaya D, Keçeci K, Dinler A. Effects of Asymmetric Nanopore Geometries on Nanoparticle Sensing Using Track-Etched Nanopore Membranes. HJBC. 2021;49(3):207-1.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc