Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2022, Cilt: 50 Sayı: 2, 205 - 214, 28.02.2022
https://doi.org/10.15671/hjbc.923371

Öz

Kaynakça

  • 1. F. Paladini, Antimicrobial Silver Nanoparticles for Wound Healing Application : Progress and Future Trends, Materials, 12 (2019) 2540.
  • 2. B. He, X. Sui, B. Yu, S. Wang, Y. Shen, H. Cong, Recent advances in drug delivery systems for enhancing drug penetration into tumors, Drug Deliv., 27 (2020) 1474-1490.
  • 3. J.K. Patra, G. Das, L.F. Fraceto, E.V.R. Campos, M.D.P. Rodriguez-Torres, L.S. Acosta-Torres, L.A. Diaz-Torres, R. Grillo, M.K. Swamy, S. Sharma, S. Habtemariam, H.S. Shin, Nano based drug delivery systems: Recent developments and future prospects, J. Nanobiotechnology, 16 (2018) 1-33.
  • 4. Z., Di, Z., Shi, M.W., Ullah, S., Li, G.A. Yang, Transparent wound dressing based on bacterial cellulose whisker and poly(2-hydroxyethyl methacrylate), Int. J. Biol. Macromol., 105 (2017) 638-644.
  • 5. T.L. Tsou, S.T. Tang, Y.C. Huang, J.R. Wu, J.J. Young, H.J. Wang, Poly(2-hydroxyethyl methacrylate) wound dressing containing ciprofloxacin and its drug release studies, J. Mater. Sci. Mater. Med. 16 (2005) 95-100.
  • 6. M.N. Singh, K.S.Y. Hemant, M. Ram, H.G. Shivakumar, Microencapsulation: A promising technique for controlled drug delivery, Res. Pharm. Sci., 5 (2010) 65-77.
  • 7. O.A. Odeku, A. Okunlola, A. Lamprecht, Microbead design for sustained drug release using four natural gums, Int. J. Biol. Macromol., 58 (2013) 113-120.
  • 8. W.H. De Jong, P.J.A. Borm, Drug delivery and nanoparticles: Applications and hazards, Int. J. Nanomedicine, 3 (2008) 133-149.
  • 9. P. Kothamasu, H. Kanumur, N. Ravur, C. Maddu, R. Parasuramrajam, S. Thangavel, Nanocapsules: The weapons for novel drug delivery systems, BioImpacts, 2 (2012) 71-81.
  • 10. J. Kaur, G.S. Gill, K. Jeet, Applications of Carbon Nanotubes in Drug Delivery: A Comprehensive Review. A Comprehensive Review, (2018) 113-135.
  • 11. M. Suhail, J.M. Rosenholm, M.U. Minhas, S.F. Badshah, A. Naeem, K.U. Khan, M. Fahad, Nanogels as drug-delivery systems: A comprehensive overview, Ther. Deliv., 10 (2019) 697-717.
  • 12. E. Tamahkar, M. Bakhshpour, A. Denizli, Molecularly imprinted composite bacterial cellulose nanofibers for antibiotic release, J. Biomater. Sci. Polym. Ed., 30 (2019) 450-461.
  • 13. E. Tamahkar, B. Özkahraman, A.K. Süloğlu, N. İdil, I. Perçin, A novel multilayer hydrogel wound dressing for antibiotic release, J. Drug Deliv. Sci. Technol., 58, (2020) 101536.
  • 14. M. Bakhshpour, N. Idil, I. Perçin, A. Denizli, Biomedical Applications of Polymeric Cryogels, Appl. Sci., 9 (2019) 553.
  • 15. G.G. de Lima, F. Traon, E. Moal, M. Canillas, M.A. Rodriguez, H.O. McCarthy, N. Dunne, D.M. Devine, M.J.D. Nugent, Composite cryogels for dual drug delivery and enhanced mechanical properties, Polym. Compos., 39, (2018) 210-220.
  • 16. K. Çetin, S. Aslıyüce, N. Idil, A. Denizli, Preparation of lysozyme loaded gelatin microcryogels and investigation of their antibacterial properties, J. Biomater. Sci. Polym. Ed., 32 (2021) 189-204.
  • 17. M. Nadgorny, J. Collins, Z. Xiao, P.J. Scales, L.A. Connal, 3D-printing of dynamic self-healing cryogels with tuneable properties, Polym. Chem., 9 (2018) 1684-1692.
  • 18. L. Rosselle, A.R. Cantelmo, A. Barras, N. Skandrani, M. Pastore, D. Aydin, L. Chambre, R. Sanyal, A. Sanyal, R. Boukherroub, S. Szunerits, An “on-demand” photothermal antibiotic release cryogel patch: Evaluation of efficacy on an: Ex vivo model for skin wound infection, Biomater. Sci., 8 (2020) 5911-5919.
  • 19. N. Sahiner, S. Sagbas, M. Sahiner, C. Silan, P(TA) macro-, micro-, nanoparticle-embedded super porous p(HEMA) cryogels as wound dressing material, Mater. Sci. Eng. C, 70 (2017) 317-376.
  • 20. S.G. Priya, A. Gupta, E. Jain, J. Sarkar, A. Damania, P.R. Jagdale, B.P. Chaudhari, K.C. Gupta, A. Kumar, Bilayer Cryogel Wound Dressing and Skin Regeneration Grafts for the Treatment of Acute Skin Wounds. ACS Appl. Mater. Interfaces., 8 (2016) 15145-59.
  • 21. Y. Saylan, A. Denizli, Supermacroporous Composite Cryogels in Biomedical Applications. Gels, 5 (2019) 20.
  • 22. A. Memic, T. Colombani, L.J. Eggermont, M. Rezaeeyazdi, J. Steingold, Z.J. Rogers, K.J. Navare, H.S. Mohammed, S.A. Bencherif, Latest Advances in Cryogel Technology for Biomedical Applications. Adv. Ther., 2 (2019) 1800114.
  • 23. A. Muñoz-Bonilla, D. López, and M.Fernández-García, Providing antibacterial activity to poly(2-hydroxy ethyl methacrylate) by copolymerization with a methacrylic thiazolium derivative, Int. J. Mol. Sci., 19 (2018) 4120.
  • 24. P. Luliński, Molecularly imprinted polymers based drug delivery devices: A way to application in modern pharmacotherapy, A review. Mater. Sci. Eng. C, 76 (2017) 1344-1353.
  • 25. L. Ye, Molecularly imprinted polymers with multi-functionality, Adv. Biochem. Eng. Biotechnol., 150 (2015) 1-24.
  • 26. A. Bossi, F. Bonini, A.P.F. Turner, S.A. Piletsky, Molecularly imprinted polymers for the recognition of proteins: The state of the art, Biosens. Bioelectron., 22 (2007) 1131-7.
  • 27. S.A. Zaidi, Molecular imprinting: A useful approach for drug delivery, Mater. Sci. Energy Technol., 3 (2020) 72-77.
  • 28. T.A Tartaglione, R.E. Polk, Review of the New Second-Generation Cephalosporins: Cefonicid, Ceforanide, and Cefuroxime, Drug Intell. Clin. Pharm., 19 (1985) 188-198.
  • 29. A.A.S. Al-Gheethi, N. Ismail, Biodegradation of Pharmaceutical Wastes in Treated Sewage Effluents by Bacillus subtilis 1556WTNC, Environ. Process., 1 (2014) 459-481.
  • 30. R. Masamune, Y. Kunii, I. Watanabe, Y. Imaoka, A. Momono, T. Toyoshima, T. Toyoda, M. Abe, K. Oouchi, Y. Kamiyama, Combination use of second generation cephem and isepamicin for the treatment of post-surgical infection of the lower digestive tract, Jpn. J. Antibiot., 50 (1997) 57-58.
  • 31. P.A. Shiekh, S.M. Andrabi, A. Singh, S. Majumder, A. Kumar, Designing cryogels through cryostructuring of polymeric matrices for biomedical applications, Eur. Polym. J., 144 (2021) 110234.
  • 32. P. Öncel, K. Çetin, A.A. Topçu, A.A., H. Yavuz, H., A. Denizli, Molecularly imprinted cryogel membranes for mitomycin C delivery, J. Biomater. Sci. Polym. Ed., 28 (2017) 519-531.
  • 33. K. Çetin, H. Alkan, N. Bereli, A. Denizli, Molecularly imprinted cryogel as a pH-responsive delivery system for doxorubicin, J. Macromol. Sci. Part A, 54 (2017) 502-508.
  • 34. E. Yeşilova, B. Osman, A. Kara, E. Tümay Özer, Molecularly imprinted particle embedded composite cryogel for selective tetracycline adsorption, Sep. Purif. Technol., 200 (2018) 155-163.
  • 35. H. Kempe, A.P. Pujolràs, M. Kempe, Molecularly imprinted polymer nanocarriers for sustained release of erythromycin, Pharm. Res., 32 (2015) 375-388.
  • 36. D. Silva, H.C. de Sousa, M.H. Gil, L.F. Santos, M.S. Oom, C. Alvarez-Lorenzo, B. Saramago, A.P. Serro, Moxifloxacin-imprinted silicone-based hydrogels as contact lens materials for extended drug release, Eur. J. Pharm. Sci., 156 (2021)105591.
  • 37. S. Kioomars, S. Heidari, B. Malaekeh-Nikouei, M. Shayani Rad, B. Khameneh, S.A. Mohajeri, Ciprofloxacin-imprinted hydrogels for drug sustained release in aqueous media. Pharm. Dev. Technol., 22 (2017) 122-129.
  • 38. S. Sheybani, T. Hosseinifar, M. Abdouss, S. Mazinani, Mesoporous molecularly imprinted polymer nanoparticles as a sustained release system of azithromycin, RSC Adv., 5 (2015) 98880-98891.
  • 39. J. Kurczewska, M. Cegłowski, P. Pecyna, M. Ratajczak, M. Gajęcka, G. Schroeder, Molecularly imprinted polymer as drug delivery carrier in alginate dressing, Mater. Lett., 201 (2017) 46-49.
  • 40. C. Mao, X. Xie, X. Liu, Z. Cui, X. Yang, K.W.K. Yeung, H. Pan, P.K. Chu, S. Wu, The controlled drug release by pH-sensitive molecularly imprinted nanospheres for enhanced antibacterial activity, Mater. Sci. Eng. C, 77 (2017) 84-91.

Cefuroxime imprinted p(HEMATrp) Cryogels: Preparation, Characterization and Antibacterial role

Yıl 2022, Cilt: 50 Sayı: 2, 205 - 214, 28.02.2022
https://doi.org/10.15671/hjbc.923371

Öz

Both Gram negative and positive bacterial strains are known as the most frequently responsible causative agents for wound infections. These infections can resulted in morbidity and mortality due to the severity. Antimicrobial agents have often been preferred to treat these infections. In this respect, Cefuroxime (CXM) belongs to the second-generation cephalosporins could be suggested against wound infections. In recent years, designing of drug delivery systems have received interest and cryogels are promising tools for creating these systems. Their elastic nature, high macroporosity, absorption and releasing ability make these materials unique for drug delivery. Besides, imprinting approach could be integrated into cryogelation and resultant matrix has an ability to recognize target antimicrobial agent having high selectivity and sensitivity prepared along with an easy and cost-effective methodology.

In the present study, CXM was imprinted onto Hydroxyethyl methacrylate (HEMA) based N‐methacryloyl‐l‐tryptophan (MATrp) containing [p(HEMATrp)] cryogels. MATrp was used as the co-monomer for the preparation of CXM-p(HEMATrp) cryogels. Characterization experiments were performed to analyze the structure of prepared cryogels. Following drug loading and releasing assays, antimicrobial performances CXM-p(HEMATrp) cryogels were investigated against Staphylococcus aureus, Enterococcus faecalis and Escherichia coli. In conclusion, CXM-p(HEMATrp) cryogels have been recommended as potential carriers for further biomedical applications.

Kaynakça

  • 1. F. Paladini, Antimicrobial Silver Nanoparticles for Wound Healing Application : Progress and Future Trends, Materials, 12 (2019) 2540.
  • 2. B. He, X. Sui, B. Yu, S. Wang, Y. Shen, H. Cong, Recent advances in drug delivery systems for enhancing drug penetration into tumors, Drug Deliv., 27 (2020) 1474-1490.
  • 3. J.K. Patra, G. Das, L.F. Fraceto, E.V.R. Campos, M.D.P. Rodriguez-Torres, L.S. Acosta-Torres, L.A. Diaz-Torres, R. Grillo, M.K. Swamy, S. Sharma, S. Habtemariam, H.S. Shin, Nano based drug delivery systems: Recent developments and future prospects, J. Nanobiotechnology, 16 (2018) 1-33.
  • 4. Z., Di, Z., Shi, M.W., Ullah, S., Li, G.A. Yang, Transparent wound dressing based on bacterial cellulose whisker and poly(2-hydroxyethyl methacrylate), Int. J. Biol. Macromol., 105 (2017) 638-644.
  • 5. T.L. Tsou, S.T. Tang, Y.C. Huang, J.R. Wu, J.J. Young, H.J. Wang, Poly(2-hydroxyethyl methacrylate) wound dressing containing ciprofloxacin and its drug release studies, J. Mater. Sci. Mater. Med. 16 (2005) 95-100.
  • 6. M.N. Singh, K.S.Y. Hemant, M. Ram, H.G. Shivakumar, Microencapsulation: A promising technique for controlled drug delivery, Res. Pharm. Sci., 5 (2010) 65-77.
  • 7. O.A. Odeku, A. Okunlola, A. Lamprecht, Microbead design for sustained drug release using four natural gums, Int. J. Biol. Macromol., 58 (2013) 113-120.
  • 8. W.H. De Jong, P.J.A. Borm, Drug delivery and nanoparticles: Applications and hazards, Int. J. Nanomedicine, 3 (2008) 133-149.
  • 9. P. Kothamasu, H. Kanumur, N. Ravur, C. Maddu, R. Parasuramrajam, S. Thangavel, Nanocapsules: The weapons for novel drug delivery systems, BioImpacts, 2 (2012) 71-81.
  • 10. J. Kaur, G.S. Gill, K. Jeet, Applications of Carbon Nanotubes in Drug Delivery: A Comprehensive Review. A Comprehensive Review, (2018) 113-135.
  • 11. M. Suhail, J.M. Rosenholm, M.U. Minhas, S.F. Badshah, A. Naeem, K.U. Khan, M. Fahad, Nanogels as drug-delivery systems: A comprehensive overview, Ther. Deliv., 10 (2019) 697-717.
  • 12. E. Tamahkar, M. Bakhshpour, A. Denizli, Molecularly imprinted composite bacterial cellulose nanofibers for antibiotic release, J. Biomater. Sci. Polym. Ed., 30 (2019) 450-461.
  • 13. E. Tamahkar, B. Özkahraman, A.K. Süloğlu, N. İdil, I. Perçin, A novel multilayer hydrogel wound dressing for antibiotic release, J. Drug Deliv. Sci. Technol., 58, (2020) 101536.
  • 14. M. Bakhshpour, N. Idil, I. Perçin, A. Denizli, Biomedical Applications of Polymeric Cryogels, Appl. Sci., 9 (2019) 553.
  • 15. G.G. de Lima, F. Traon, E. Moal, M. Canillas, M.A. Rodriguez, H.O. McCarthy, N. Dunne, D.M. Devine, M.J.D. Nugent, Composite cryogels for dual drug delivery and enhanced mechanical properties, Polym. Compos., 39, (2018) 210-220.
  • 16. K. Çetin, S. Aslıyüce, N. Idil, A. Denizli, Preparation of lysozyme loaded gelatin microcryogels and investigation of their antibacterial properties, J. Biomater. Sci. Polym. Ed., 32 (2021) 189-204.
  • 17. M. Nadgorny, J. Collins, Z. Xiao, P.J. Scales, L.A. Connal, 3D-printing of dynamic self-healing cryogels with tuneable properties, Polym. Chem., 9 (2018) 1684-1692.
  • 18. L. Rosselle, A.R. Cantelmo, A. Barras, N. Skandrani, M. Pastore, D. Aydin, L. Chambre, R. Sanyal, A. Sanyal, R. Boukherroub, S. Szunerits, An “on-demand” photothermal antibiotic release cryogel patch: Evaluation of efficacy on an: Ex vivo model for skin wound infection, Biomater. Sci., 8 (2020) 5911-5919.
  • 19. N. Sahiner, S. Sagbas, M. Sahiner, C. Silan, P(TA) macro-, micro-, nanoparticle-embedded super porous p(HEMA) cryogels as wound dressing material, Mater. Sci. Eng. C, 70 (2017) 317-376.
  • 20. S.G. Priya, A. Gupta, E. Jain, J. Sarkar, A. Damania, P.R. Jagdale, B.P. Chaudhari, K.C. Gupta, A. Kumar, Bilayer Cryogel Wound Dressing and Skin Regeneration Grafts for the Treatment of Acute Skin Wounds. ACS Appl. Mater. Interfaces., 8 (2016) 15145-59.
  • 21. Y. Saylan, A. Denizli, Supermacroporous Composite Cryogels in Biomedical Applications. Gels, 5 (2019) 20.
  • 22. A. Memic, T. Colombani, L.J. Eggermont, M. Rezaeeyazdi, J. Steingold, Z.J. Rogers, K.J. Navare, H.S. Mohammed, S.A. Bencherif, Latest Advances in Cryogel Technology for Biomedical Applications. Adv. Ther., 2 (2019) 1800114.
  • 23. A. Muñoz-Bonilla, D. López, and M.Fernández-García, Providing antibacterial activity to poly(2-hydroxy ethyl methacrylate) by copolymerization with a methacrylic thiazolium derivative, Int. J. Mol. Sci., 19 (2018) 4120.
  • 24. P. Luliński, Molecularly imprinted polymers based drug delivery devices: A way to application in modern pharmacotherapy, A review. Mater. Sci. Eng. C, 76 (2017) 1344-1353.
  • 25. L. Ye, Molecularly imprinted polymers with multi-functionality, Adv. Biochem. Eng. Biotechnol., 150 (2015) 1-24.
  • 26. A. Bossi, F. Bonini, A.P.F. Turner, S.A. Piletsky, Molecularly imprinted polymers for the recognition of proteins: The state of the art, Biosens. Bioelectron., 22 (2007) 1131-7.
  • 27. S.A. Zaidi, Molecular imprinting: A useful approach for drug delivery, Mater. Sci. Energy Technol., 3 (2020) 72-77.
  • 28. T.A Tartaglione, R.E. Polk, Review of the New Second-Generation Cephalosporins: Cefonicid, Ceforanide, and Cefuroxime, Drug Intell. Clin. Pharm., 19 (1985) 188-198.
  • 29. A.A.S. Al-Gheethi, N. Ismail, Biodegradation of Pharmaceutical Wastes in Treated Sewage Effluents by Bacillus subtilis 1556WTNC, Environ. Process., 1 (2014) 459-481.
  • 30. R. Masamune, Y. Kunii, I. Watanabe, Y. Imaoka, A. Momono, T. Toyoshima, T. Toyoda, M. Abe, K. Oouchi, Y. Kamiyama, Combination use of second generation cephem and isepamicin for the treatment of post-surgical infection of the lower digestive tract, Jpn. J. Antibiot., 50 (1997) 57-58.
  • 31. P.A. Shiekh, S.M. Andrabi, A. Singh, S. Majumder, A. Kumar, Designing cryogels through cryostructuring of polymeric matrices for biomedical applications, Eur. Polym. J., 144 (2021) 110234.
  • 32. P. Öncel, K. Çetin, A.A. Topçu, A.A., H. Yavuz, H., A. Denizli, Molecularly imprinted cryogel membranes for mitomycin C delivery, J. Biomater. Sci. Polym. Ed., 28 (2017) 519-531.
  • 33. K. Çetin, H. Alkan, N. Bereli, A. Denizli, Molecularly imprinted cryogel as a pH-responsive delivery system for doxorubicin, J. Macromol. Sci. Part A, 54 (2017) 502-508.
  • 34. E. Yeşilova, B. Osman, A. Kara, E. Tümay Özer, Molecularly imprinted particle embedded composite cryogel for selective tetracycline adsorption, Sep. Purif. Technol., 200 (2018) 155-163.
  • 35. H. Kempe, A.P. Pujolràs, M. Kempe, Molecularly imprinted polymer nanocarriers for sustained release of erythromycin, Pharm. Res., 32 (2015) 375-388.
  • 36. D. Silva, H.C. de Sousa, M.H. Gil, L.F. Santos, M.S. Oom, C. Alvarez-Lorenzo, B. Saramago, A.P. Serro, Moxifloxacin-imprinted silicone-based hydrogels as contact lens materials for extended drug release, Eur. J. Pharm. Sci., 156 (2021)105591.
  • 37. S. Kioomars, S. Heidari, B. Malaekeh-Nikouei, M. Shayani Rad, B. Khameneh, S.A. Mohajeri, Ciprofloxacin-imprinted hydrogels for drug sustained release in aqueous media. Pharm. Dev. Technol., 22 (2017) 122-129.
  • 38. S. Sheybani, T. Hosseinifar, M. Abdouss, S. Mazinani, Mesoporous molecularly imprinted polymer nanoparticles as a sustained release system of azithromycin, RSC Adv., 5 (2015) 98880-98891.
  • 39. J. Kurczewska, M. Cegłowski, P. Pecyna, M. Ratajczak, M. Gajęcka, G. Schroeder, Molecularly imprinted polymer as drug delivery carrier in alginate dressing, Mater. Lett., 201 (2017) 46-49.
  • 40. C. Mao, X. Xie, X. Liu, Z. Cui, X. Yang, K.W.K. Yeung, H. Pan, P.K. Chu, S. Wu, The controlled drug release by pH-sensitive molecularly imprinted nanospheres for enhanced antibacterial activity, Mater. Sci. Eng. C, 77 (2017) 84-91.
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Articles
Yazarlar

Sevgi Aslıyüce Çoban 0000-0003-0002-0856

Neslihan İdil 0000-0002-6540-540X

Adil Denizli 0000-0001-7548-5741

Yayımlanma Tarihi 28 Şubat 2022
Kabul Tarihi 24 Mayıs 2021
Yayımlandığı Sayı Yıl 2022 Cilt: 50 Sayı: 2

Kaynak Göster

APA Aslıyüce Çoban, S., İdil, N., & Denizli, A. (2022). Cefuroxime imprinted p(HEMATrp) Cryogels: Preparation, Characterization and Antibacterial role. Hacettepe Journal of Biology and Chemistry, 50(2), 205-214. https://doi.org/10.15671/hjbc.923371
AMA Aslıyüce Çoban S, İdil N, Denizli A. Cefuroxime imprinted p(HEMATrp) Cryogels: Preparation, Characterization and Antibacterial role. HJBC. Şubat 2022;50(2):205-214. doi:10.15671/hjbc.923371
Chicago Aslıyüce Çoban, Sevgi, Neslihan İdil, ve Adil Denizli. “Cefuroxime Imprinted p(HEMATrp) Cryogels: Preparation, Characterization and Antibacterial Role”. Hacettepe Journal of Biology and Chemistry 50, sy. 2 (Şubat 2022): 205-14. https://doi.org/10.15671/hjbc.923371.
EndNote Aslıyüce Çoban S, İdil N, Denizli A (01 Şubat 2022) Cefuroxime imprinted p(HEMATrp) Cryogels: Preparation, Characterization and Antibacterial role. Hacettepe Journal of Biology and Chemistry 50 2 205–214.
IEEE S. Aslıyüce Çoban, N. İdil, ve A. Denizli, “Cefuroxime imprinted p(HEMATrp) Cryogels: Preparation, Characterization and Antibacterial role”, HJBC, c. 50, sy. 2, ss. 205–214, 2022, doi: 10.15671/hjbc.923371.
ISNAD Aslıyüce Çoban, Sevgi vd. “Cefuroxime Imprinted p(HEMATrp) Cryogels: Preparation, Characterization and Antibacterial Role”. Hacettepe Journal of Biology and Chemistry 50/2 (Şubat 2022), 205-214. https://doi.org/10.15671/hjbc.923371.
JAMA Aslıyüce Çoban S, İdil N, Denizli A. Cefuroxime imprinted p(HEMATrp) Cryogels: Preparation, Characterization and Antibacterial role. HJBC. 2022;50:205–214.
MLA Aslıyüce Çoban, Sevgi vd. “Cefuroxime Imprinted p(HEMATrp) Cryogels: Preparation, Characterization and Antibacterial Role”. Hacettepe Journal of Biology and Chemistry, c. 50, sy. 2, 2022, ss. 205-14, doi:10.15671/hjbc.923371.
Vancouver Aslıyüce Çoban S, İdil N, Denizli A. Cefuroxime imprinted p(HEMATrp) Cryogels: Preparation, Characterization and Antibacterial role. HJBC. 2022;50(2):205-14.

HACETTEPE JOURNAL OF BIOLOGY AND CHEMİSTRY

Copyright © Hacettepe University Faculty of Science

http://www.hjbc.hacettepe.edu.tr/

https://dergipark.org.tr/tr/pub/hjbc