TENOFOVIR DISOPROXIL FUMARATE RELEASE FROM GLUTARALDEHYDE CROSS-LINKED CHITOSAN/Β-CYCLODEXTRIN HYDROGEL
Yıl 2024,
Cilt: 52 Sayı: 2, 97 - 115, 01.04.2024
Nuh Yaman
,
Sevil Erdogan
,
Betül Taşdelen
Öz
In this study, chitosan was produced from crayfish Astacus leptodactylus, and then it was used to synthesize chitosan-graft-β-cyclodextrin (CS-g-β-CD) hydrogel. The produced chitosan (CS) and the sythesized CS-g-β-CD hydrogel were characterized using a Fourier Transform Infrared Spectroscopy (FTIR), Proton Nuclear Magnetic Resonance Spectroscopy (1H-NMR), X-ray Diffraction (XRD), and Scanning Electron Microscopy (SEM). Tenofovir disoproxil fumarate (TDF) was used as a model to investigate the antiviral drug release properties of the CS-g-β-CD hydrogel. The synthesized hydrogel had an almost homogeneous pore structure and a high swelling capacity which increases depending on the amount of β-Cyclodextrin (β-CD). The drug-loaded CS-g-β-CD hydrogels was examined by XRD and 1H-NMR, and SEM analyses. Seventy-three percent of the TDF loaded on the synthesized hydrogels was released into phosphate-buffered saline (PBS) solution at 37 ºC. The drug release behavior of all prepared CS-g-β-CD hydrogels fitted the Korsmeyer-Peppas model. The addition of β-CD into the gel improved the swelling ability and TDF release of the CS-g-β-CD hydrogel system.
Destekleyen Kurum
Trakya University Scientific Research Projects Unit
Proje Numarası
TUBAP 2020/149
Teşekkür
The authors thank Nobel İlaç San. ve Tic. A.Ş. (Turkey) for their contribution to supply the active substance Tenofovir disoproxil fumarate.
Kaynakça
- WHO, 2021a. “World Health Organisation, Coronavirus (COVID-19)”, https://covid19.who.int/ (Erişim tarihi: 29.10.2021)
- K. Kurt, L. Dönbak, A. Kayraldız, Tenofovir Disoproxil Fumarate in the Treatment of AIDS, Archives Medical Review Journal, 24 (2015) 119-134.
- WHO, 2021b. “World Health Organisation, Hepatitis B”, https://www.who.int/news-room/fact-sheets/detail/hepatitis-b (Erişim tarihi: 29.10.2021)
- UNAIDS, 2021. “The Joint United Nations Programme on HIV/AIDS, Global HIV & AIDS statistics-Fact sheet”, https://www.unaids.org/en/resources/fact-sheet (Erişim tarihi: 02.12.2021)
- D. Yu, J. Heathcote, Tenofovir in the treatment of chronic hepatitis B, Therapy, 8 (2011) 527-544.
- J.E. Gallant, S. Deresinski, Tenofovir disoproxil fumarate, Clin. Infect. Dis., 37 (2003) 944-950.
- S.M. Ecin, N. Çalık Başaran, M. Aladağ, Evaluation of the Effectiveness of Tenofovir in Chronic Hepatitis B Patients, Acta Medica, 51 (2020) 9-14.
- J. Li, D.H. Zhang, X.X. Zhang, The Occurrence of rtA194T Mutant After Long-Term Lamivudine Monotherapy Remains Sensitive to Tenofovir Disoproxil Fumarate: A Case Report, Infect. Drug Resist., 14 (2021) 1013-1017.
- S. Selvaraj, V. Niraimathi, M. Nappinnai, Formulation and evaluation of acyclovir loaded chitosan nanoparticles, Int. J. Pharm. Anal. Res., 5 (2016) 619-629.
- M.M. Al-Tabakha, S.A. Khan, A. Ashames, H. Ullah, K. Ullah, G. Murtaza, N. Hassan, Synthesis, Characterization and Safety Evaluation of Sericin-Based Hydrogels for Controlled Delivery of Acyclovir, Pharmaceuticals, 14 (2021) 234.
- N.S. Malik, M. Ahmad, M.U. Minhas, R. Tulain, K. Barkat, I. Khalid, Q. Khalid, Chitosan/Xanthan Gum Based Hydrogels as Potential Carrier for an Antiviral Drug: Fabrication, Characterization, and Safety Evaluation, Front. Chem., 8 (2020) 50.
- L.J. del Valle, A. Diaz, J. Puiggali, Hydrogels for Biomedical Applications: Cellulose, Chitosan, and Protein/Peptide Derivatives, Gels, 3 (2017) 27.
- H. Kono, T. Teshirogi, Cyclodextrin-grafted chitosan hydrogels for controlled drug delivery, Int. J. Biol. Macromol., 72 (2015) 299-308.
- Y. Moukbil, F.N. Oktar, B. Ozbek, D. Ficai, A. Ficai, E. Andronescu, M. Sayıp Eroğlu, O. Gunduz, Biohydrogels for medical applications: A short review, Org. Commun., 11 (2018) 123-141.
- S. Peers, A. Montembault, C. Ladaviere, Chitosan hydrogels for sustained drug delivery, J. Control. Release, 326 (2020) 150-163.
- R.C.F. Cheung, T.B. Ng, J.H. Wong, W.Y. Chan, Chitosan: An Update on Potential Biomedical and Pharmaceutical Applications, Mar. Drugs, 13 (2015) 5156-5186.
- F.S. El-banna, M.E. Mahfouz, S. Leporatti, M. El-Kemary, N.A.N. Hanafy, Chitosan as a Natural Copolymer with Unique Properties for the Development of Hydrogels, Appl. Sci-Basel., 9 (2019) 2193.
- D. Zhao, S. Yu, B. Sun, S. Gao, S. Guo, K. Zhao, Biomedical Applications of Chitosan and Its Derivative Nanoparticles, Polymers, 10 (2018) 462.
- E.S. Abdou, K.S.A. Nagy, M.Z. Elsabee, Extraction and characterization of chitin and chitosan from local sources, Bioresour. Technol., 99 (2008) 1359-1367.
- S.S.A. Loutfy, M.H. Elberry, K.Y. Farroh, H.T. Mohamed, A.A. Mohamed, E.B. Mohamed, A.H.I. Faraag, S.A. Mousa, Antiviral Activity of Chitosan Nanoparticles Encapsulating Curcumin Against Hepatitis C Virus Genotype 4a in Human Hepatoma Cell Lines, Int. J. Nanomedicine, 15 (2020) 2699-2715.
- S. Mizrahy, D. Peer, Polysaccharides as building blocks for nanotherapeutics, Chem. Soc. Rev., 41 (2012) 2623-2640.
- J.X. Zhang, P.X. Ma, Cyclodextrin-based supramolecular systems for drug delivery: Recent progress and future perspective, Adv. Drug Deliv. Rev., 65 (2013) 1215-1233.
- P. Saokham, C. Muankaew, P. Jansook, T. Loftsson, Solubility of Cyclodextrins and Drug/Cyclodextrin Complexes, Molecules, 23 (2018) 1161.
- C.A.R. Barragán, E.R.M. Balleza, L. García-Uriostegui, J.A.A. Ortega, G. Toriz, E. Delgado, Rheological characterization of new thermosensitive hydrogels formed by chitosan, glycerophosphate, and phosphorylated β-cyclodextrin, Carbohydr. Polym., 201 (2018) 471-481.
- S.A. Khan, W. Azam, A. Ashames, K.M. Fahalelebom, K. Ullah, A. Mannan, G. Murtaza, β-Cyclodextrin-based (IA-co-AMPS) Semi-IPNs as smart biomaterials for oral delivery of hydrophilic drugs: Synthesis, characterization, in-Vitro and in-Vivo evaluation, J. Drug Deliv. Sci. Technol., 60 (2020) 101970.
- H.Y. Zhou, Z.Y. Wang, X.Y. Duan, L.J. Jiang, P.P. Cao, J.X. Li, J.B. Li, Design and evaluation of chitosan-β-cyclodextrin based thermosensitive hydrogel, Biochem. Eng. J., 111 (2016) 100-107.
- K. Yang, S. Wan, B. Chen, W. Gao, J. Chen, M. Liu, B. He, H. Wu, Dual pH and temperature responsive hydrogels based on beta-cyclodextrin derivatives for atorvastatin delivery, Carbohydr. Polym., 136 (2016) 300-6.
- T.F.S. Evangelista, G.R.S. Andrade, K.N.S. Nascimento, S.B. dos Santos, M.F. Coata Santos, C.R.M. Doca, C.S. Estevam, I.F. Gimenez, L.E. Almeida, Supramolecular polyelectrolyte complexes based on cyclodextrin-grafted chitosan and carrageenan for controlled drug release, Carbohydr. Polym., 245 (2020) 116592.
- N.S. Malik, M. Ahmad, M.U. Minhas, Cross-linked β-cyclodextrin and carboxymethyl cellulose hydrogels for controlled drug delivery of acyclovir, PLoS ONE, 12 (2017) e0172727.
- W. Wang, S. Bo, S. Li, W. Qin, Determination of the Mark-Houwink Equation for Chitosans with Different Degrees of Deacetylation, Int. J. Biol. Macromol., 13 (1991) 281-285.
- A. Rasool, S. Ata, A. Islam, M. Rizwan, M.k. Azeem, A. Mehmood, R.U. Khan, A.R. Qureshi, H.A. Mahmood, Kinetics and controlled release of lidocaine from novel carrageenan and alginate-based blend hydrogels, Int. J. Biol. Macromol., 147 (2020) 67-68.
- N.R. Vyavahare, M.G. Kulkarni, M.R.A, Zero order release from hydrogels, J. Membr. Sci., 54 (1990) 221-228.
- H. Hosseinzadeh, Novel interpenetrating polymer network based on chitosan for the controlled release of cisplatin, JBASR, 2 (2012) 2200-2203.
- S. Khan, N.M. Ranjha, Effect of degree of cross-linking on swelling and on drug release of low viscous chitosan/poly(vinyl alcohol) hydrogels, Polym. Bull., 71 (2014) 2133-2158.
- P.L. Ritger, N.A. Peppas, A simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs, J. Control. Release, 5 (1987) 23-36.
- S. Morariu, M. Bercea, L.M. Gradinaru, I. Rosca, M. Avadanei, Versatile pol(viny alcohol)/clay physical hydrogels with tailorable structure as potantial candidates for wound healing applications, Mat. Sci. Eng. C-Mater., 109 (2020) 110395.
- M. Kaya, F. Dudakli, M. Asan-Ozusaglam, Y.S. Cakmak, T. Baran, A. Mentes, S. Erdogan, Porous and nanofiber alpha-chitosan obtained from blue crab (Callinectes sapidus) tested for antimicrobial and antioxidant activities, Lwt-Food Sci. Technol., 65 (2016) 1109-1117.
- S. Erdogan, Textile finishing with chitosan and silver nanoparticles against Escherichia coli ATCC 8739, Trak. Univ. J. Nat. Sci., 21 (2020) 21-32.
- G. Michailidou, E.N. Koukaras, D.N. Bikiaris, Vanillin chitosan miscible hydrogel blends and their prospects for 3D printing biomedical applications, Int. J. Biol. Macromol., 192 (2021) 1266-1275.
- L.C. Gomes, S.I. Faria, J. Valcarcel, J.A. Vazquez, M.A. Cerqueira, L. Pastrana, A.I. Bourbon, F.J. Mergulhao, The Effect of Molecular Weight on the Antimicrobial Activity of Chitosan from Loligo opalescens for Food Packaging Applications, Mar. Drugs, 19 (2021) 384.
- S.M. Joseph, S. Krishnamoorthy, R. Paranthaman, J.A. Moses, C. Anandharamakrishnan, A review on source-specific chemistry, functionality, and applications of chitin and chitosan, Carbohydr. Polym. Technol. Appl., 2 (2021) 100036.
- I. Aranaz, A.R. Alcántara, M.C. Civera, C. Arias, B. Elorza, A.H. Caballero, N. Acosta, Chitosan: An Overview of Its Properties and Applications, Polymers, 13 (2021) 3256.
- M. Rajabi, M. McConnell, J. Cabral, M.A. Ali, Chitosan hydrogels in 3D printing for biomedical applications, Carbohydr. Polym., 260 (2021) 117768.
- H.Y. Zhou, X.G. Chen, M. Kong, C.S. Liu, D.S. Cha, J.F. Kennedy, Effect of molecular weight and degree of chitosan deacetylation on the preparation and characteristics of chitosan thermosensitive hydrogel as a delivery system, Carbohydr. Polym., 73 (2008) 265-273.
- D. Han, Z. Han, L. Liu, Y. Wang, S Xin, H. Zhang, Z. Yu, Solubility Enhancement of Myricetin by Inclusion Complexation with Heptakis-O-(2-Hydroxypropyl)-β-Cyclodextrin: A Joint Experimental and Theoretical Study, Int. J. Mol. Sci., 21 (2020) 766.
- G. Paun, E. Neagu, A. Tache, G.L. Radu, New type of chitosan/2-hydroxypropyl-β-cyclodextrin composite membrane for gallic acid encapsulation and controlled release, Acta Chim. Slov., 61 (2014) 27-33.
- E.M. Sultanova, M.K. Salakhutdinova, Y.I. Oshchepkova, A.M. Asrorov, M.J. Oripova, U.J. Ishimov, S.I. Salikhov, Chitosan Hydrogel Improves Bioavailability of Megosin, Eur. Pharm. J., 67 (2019) 1-6.
- N.S. Malik, M. Ahmad, M.S. Alqahtani, A. Mahmood, K. Barkat, M.T. Khan, U.R. Tulain, A. Rashid, β-cyclodextrin chitosan-based hydrogels with tunable pH-responsive properties for controlled release of acyclovir: design, characterization, safety, and pharmacokinetic evaluation, Drug Deliv., 28 (2021) 1093-1108.
- Y. Wang, J. Wang, Z. Yuan, H. Han, T. Li, L. Li, X. Guo, Chitosan cross-linked poly(acrylic acid) hydrogels: Drug release control and mechanism, Colloids Surf. B., 152 (2017) 252-259.
- X. Hu, L. Feng, W. Wei, et al, Synthesis and characterization of a novel semi-IPN hydrogel based on Salecan and poly(N,N-dimethyla-crylamide-co-2-hydroxyethyl methacrylate), Carbohydr. Polym., 105 (2014) 135-144.
- M.E.A. Ali, M.M.S. Aboelfadl, A.M. Selim, H.F. Khalil, G.M. Elkady, Chitosan nanoparticles extracted from shrimp shells, application for removal of Fe(II) and Mn(II) from aqueous phases, Sep. Sci. Technol., 53 (2018) 2870-2881.
- E.C. Elionai, W.N. Mussel, J.M. Resende, S.L. Fialho, J. Barbosa, E. Carignani, M. Geppi, M.I. Yoshida, Characterization of tenofovir disoproxil fumarate and its behavior under heating, Cryst. Growth Des., 15 (2015) 1915-1922.
- M. Bajpai, S. Bajpai, P. Jyotishi, Water absorption and moisture per-meation properties of chitosan/poly(acrylamide-co-itaconic acid) IPC films, Int. J Biol. Macromol., 84 (2016) 1-9.
- Y.X. Wang, Y.P. Qin, Z.J. Kong, Y.J. Wang, L.L. Ma, Glutaraldehyde Cross-linked Silk Fibroin Films for Controlled Release, Advances in Materials and Materials Processing Iv, Pts 1 and 2, 887-888 (2014) 541-546.
- G.R. Fulmer, A.J.M. Miller, N.H. Sherden, H.E. Gottlieb, A. Nudelman, B.M. Stoltz, J.E. Bercaw, Karen I. Goldberg, NMR Chemical Shifts of Trace Impurities: Common Laboratory Solvents, Organics, and Gases in Deuterated Solvents Relevant to the Organometallic Chemist, Organometallics, 29 (2010) 2176-2179.
- J. López-Cervantes, D.I. Sánchez-Machado, R.G. Sánchez-Duarte, M.A. Correa-Murrieta, Study of a fixed-bed column in the adsorption of an azo dye from an aqueous medium using a chitosan-glutaraldehyde biosorbent, Adsorp. Sci. Technol., 36 (2018) 215-232.
- S. Chatterjee, P.C.L. Hui, C.W. Kan, W. Wang, Dual-responsive (pH/temperature) Pluronic F-127 hydrogel drug delivery system for textile-based transdermal therapy, Sci. Rep., 9 (2019) 11658.
- Z. Aytac, S.I. Kusku, E. Durgun, T. Uyar, Encapsulation of gallic acid/cyclodextrin inclusion complex in electrospun polylactic acid nanofibers: Release behavior and antioxidant activity of gallic acid, Mater. Sci. Eng. C-Mater. Biol. Appl., 63 (2016) 231-239.
- K. Sichilongo, Z.G. Keolopile, S. Ndlovu, E. Mwando Jr., C. Shaba, E. Massele, Characterization of tenofovir, tenofovir disoproxil fumarate and emtricitabine in aqueous solutions containing sodium ions using ESI-MS, NMR and Ab initio calculations, Int. J. Mass Spectrom., 410 (2016) 1-11.
- G. Yurtdaş Kırmızılıoğlu, Host-guest inclusion complex of desloratadine with 2(hydroxy)propyl-β-cyclodextrin (HP-β-CD): Preparation, binding behaviors and dissolution properties, J. Res. Pharm., 24 (2020) 693-707.
- B. Tasdelen, N. Kayaman-Apohan, O. Güven, B.M. Baysal, Swelling and diffusion studies of poly(N-isopropylacrylamide/itaconic acid) copolymeric hydrogels in water and aqueous solutions of drugs, J. Appl. Polym. Sci., 91 (2004) 911-915.
- T. Demirci, M. Erginer Hasköylü, M.S. Eroğlu, J. Hemberger, E. Toksoy Öner, Levan-based hydrogels for controlled release of Amphotericin B for dermal local antifungal therapy of Candidiasis, Eur. J. Pharm. Sci., 145 (2020) 105255.
- B. Nigusse, T. Gebre-Mariam, A. Belete, Design, development and optimization of sustained release floating, bioadhesive and swellable matrix tablet of ranitidine hydrochloride. PLoS ONE, 16 (2021) e0253391.
- L.P. Jahromi, M. Ghazali, Hb. Ashrafi, A. Azadi, A comparison of models for the analysis of the kinetics of drug release from PLGA-based nanoparticles, Heliyon, 6 (2020) e03451.
- G. Yasayan, Chitosan films and chitosan/pectin polyelectrolyte complexes encapsulating silver sulfadiazine for wound healing, Istanbul J. Pharm., 50: (2020) 238-244.
- H.Y. Zhou, Z.Y. Wang, X.Y. Duan, L.J. Jiang, P.P. Cao, J.X. Li, J.B. Li, Design and evaluation of chitosan-β-cyclodextrin based thermosensitive hydrogel, Biochem. Eng. J., 111 (2016) 100-107.
- M. Suhail, Y.F. Shao, Q.L. Vu, P.C. Wu, Designing of pH-Sensitive Hydrogels for Colon Targeted Drug Delivery; Characterization and In Vitro Evaluation, Gels, 8 (2022) 155.
- N.S. Heredia, K. Vizuete, M. Flores-Calero, V.K. Pazmiño, F. Pilaquinga, B. Kumar et al, Comparative statistical analysis of the release kinetics models for nanoprecipitated drug delivery systems based on poly(lactic-co-glycolic acid), PLoS ONE, 17 (2022) e0264825.
- J. Bhasarkar, D. Bal, Kinetic investigation of a controlled drug delivery system based on alginate scaffold with embedded voids, J. Appl. Biomater. Funct. Mater., 17 (2019) 2280800018817462.
Yıl 2024,
Cilt: 52 Sayı: 2, 97 - 115, 01.04.2024
Nuh Yaman
,
Sevil Erdogan
,
Betül Taşdelen
Proje Numarası
TUBAP 2020/149
Kaynakça
- WHO, 2021a. “World Health Organisation, Coronavirus (COVID-19)”, https://covid19.who.int/ (Erişim tarihi: 29.10.2021)
- K. Kurt, L. Dönbak, A. Kayraldız, Tenofovir Disoproxil Fumarate in the Treatment of AIDS, Archives Medical Review Journal, 24 (2015) 119-134.
- WHO, 2021b. “World Health Organisation, Hepatitis B”, https://www.who.int/news-room/fact-sheets/detail/hepatitis-b (Erişim tarihi: 29.10.2021)
- UNAIDS, 2021. “The Joint United Nations Programme on HIV/AIDS, Global HIV & AIDS statistics-Fact sheet”, https://www.unaids.org/en/resources/fact-sheet (Erişim tarihi: 02.12.2021)
- D. Yu, J. Heathcote, Tenofovir in the treatment of chronic hepatitis B, Therapy, 8 (2011) 527-544.
- J.E. Gallant, S. Deresinski, Tenofovir disoproxil fumarate, Clin. Infect. Dis., 37 (2003) 944-950.
- S.M. Ecin, N. Çalık Başaran, M. Aladağ, Evaluation of the Effectiveness of Tenofovir in Chronic Hepatitis B Patients, Acta Medica, 51 (2020) 9-14.
- J. Li, D.H. Zhang, X.X. Zhang, The Occurrence of rtA194T Mutant After Long-Term Lamivudine Monotherapy Remains Sensitive to Tenofovir Disoproxil Fumarate: A Case Report, Infect. Drug Resist., 14 (2021) 1013-1017.
- S. Selvaraj, V. Niraimathi, M. Nappinnai, Formulation and evaluation of acyclovir loaded chitosan nanoparticles, Int. J. Pharm. Anal. Res., 5 (2016) 619-629.
- M.M. Al-Tabakha, S.A. Khan, A. Ashames, H. Ullah, K. Ullah, G. Murtaza, N. Hassan, Synthesis, Characterization and Safety Evaluation of Sericin-Based Hydrogels for Controlled Delivery of Acyclovir, Pharmaceuticals, 14 (2021) 234.
- N.S. Malik, M. Ahmad, M.U. Minhas, R. Tulain, K. Barkat, I. Khalid, Q. Khalid, Chitosan/Xanthan Gum Based Hydrogels as Potential Carrier for an Antiviral Drug: Fabrication, Characterization, and Safety Evaluation, Front. Chem., 8 (2020) 50.
- L.J. del Valle, A. Diaz, J. Puiggali, Hydrogels for Biomedical Applications: Cellulose, Chitosan, and Protein/Peptide Derivatives, Gels, 3 (2017) 27.
- H. Kono, T. Teshirogi, Cyclodextrin-grafted chitosan hydrogels for controlled drug delivery, Int. J. Biol. Macromol., 72 (2015) 299-308.
- Y. Moukbil, F.N. Oktar, B. Ozbek, D. Ficai, A. Ficai, E. Andronescu, M. Sayıp Eroğlu, O. Gunduz, Biohydrogels for medical applications: A short review, Org. Commun., 11 (2018) 123-141.
- S. Peers, A. Montembault, C. Ladaviere, Chitosan hydrogels for sustained drug delivery, J. Control. Release, 326 (2020) 150-163.
- R.C.F. Cheung, T.B. Ng, J.H. Wong, W.Y. Chan, Chitosan: An Update on Potential Biomedical and Pharmaceutical Applications, Mar. Drugs, 13 (2015) 5156-5186.
- F.S. El-banna, M.E. Mahfouz, S. Leporatti, M. El-Kemary, N.A.N. Hanafy, Chitosan as a Natural Copolymer with Unique Properties for the Development of Hydrogels, Appl. Sci-Basel., 9 (2019) 2193.
- D. Zhao, S. Yu, B. Sun, S. Gao, S. Guo, K. Zhao, Biomedical Applications of Chitosan and Its Derivative Nanoparticles, Polymers, 10 (2018) 462.
- E.S. Abdou, K.S.A. Nagy, M.Z. Elsabee, Extraction and characterization of chitin and chitosan from local sources, Bioresour. Technol., 99 (2008) 1359-1367.
- S.S.A. Loutfy, M.H. Elberry, K.Y. Farroh, H.T. Mohamed, A.A. Mohamed, E.B. Mohamed, A.H.I. Faraag, S.A. Mousa, Antiviral Activity of Chitosan Nanoparticles Encapsulating Curcumin Against Hepatitis C Virus Genotype 4a in Human Hepatoma Cell Lines, Int. J. Nanomedicine, 15 (2020) 2699-2715.
- S. Mizrahy, D. Peer, Polysaccharides as building blocks for nanotherapeutics, Chem. Soc. Rev., 41 (2012) 2623-2640.
- J.X. Zhang, P.X. Ma, Cyclodextrin-based supramolecular systems for drug delivery: Recent progress and future perspective, Adv. Drug Deliv. Rev., 65 (2013) 1215-1233.
- P. Saokham, C. Muankaew, P. Jansook, T. Loftsson, Solubility of Cyclodextrins and Drug/Cyclodextrin Complexes, Molecules, 23 (2018) 1161.
- C.A.R. Barragán, E.R.M. Balleza, L. García-Uriostegui, J.A.A. Ortega, G. Toriz, E. Delgado, Rheological characterization of new thermosensitive hydrogels formed by chitosan, glycerophosphate, and phosphorylated β-cyclodextrin, Carbohydr. Polym., 201 (2018) 471-481.
- S.A. Khan, W. Azam, A. Ashames, K.M. Fahalelebom, K. Ullah, A. Mannan, G. Murtaza, β-Cyclodextrin-based (IA-co-AMPS) Semi-IPNs as smart biomaterials for oral delivery of hydrophilic drugs: Synthesis, characterization, in-Vitro and in-Vivo evaluation, J. Drug Deliv. Sci. Technol., 60 (2020) 101970.
- H.Y. Zhou, Z.Y. Wang, X.Y. Duan, L.J. Jiang, P.P. Cao, J.X. Li, J.B. Li, Design and evaluation of chitosan-β-cyclodextrin based thermosensitive hydrogel, Biochem. Eng. J., 111 (2016) 100-107.
- K. Yang, S. Wan, B. Chen, W. Gao, J. Chen, M. Liu, B. He, H. Wu, Dual pH and temperature responsive hydrogels based on beta-cyclodextrin derivatives for atorvastatin delivery, Carbohydr. Polym., 136 (2016) 300-6.
- T.F.S. Evangelista, G.R.S. Andrade, K.N.S. Nascimento, S.B. dos Santos, M.F. Coata Santos, C.R.M. Doca, C.S. Estevam, I.F. Gimenez, L.E. Almeida, Supramolecular polyelectrolyte complexes based on cyclodextrin-grafted chitosan and carrageenan for controlled drug release, Carbohydr. Polym., 245 (2020) 116592.
- N.S. Malik, M. Ahmad, M.U. Minhas, Cross-linked β-cyclodextrin and carboxymethyl cellulose hydrogels for controlled drug delivery of acyclovir, PLoS ONE, 12 (2017) e0172727.
- W. Wang, S. Bo, S. Li, W. Qin, Determination of the Mark-Houwink Equation for Chitosans with Different Degrees of Deacetylation, Int. J. Biol. Macromol., 13 (1991) 281-285.
- A. Rasool, S. Ata, A. Islam, M. Rizwan, M.k. Azeem, A. Mehmood, R.U. Khan, A.R. Qureshi, H.A. Mahmood, Kinetics and controlled release of lidocaine from novel carrageenan and alginate-based blend hydrogels, Int. J. Biol. Macromol., 147 (2020) 67-68.
- N.R. Vyavahare, M.G. Kulkarni, M.R.A, Zero order release from hydrogels, J. Membr. Sci., 54 (1990) 221-228.
- H. Hosseinzadeh, Novel interpenetrating polymer network based on chitosan for the controlled release of cisplatin, JBASR, 2 (2012) 2200-2203.
- S. Khan, N.M. Ranjha, Effect of degree of cross-linking on swelling and on drug release of low viscous chitosan/poly(vinyl alcohol) hydrogels, Polym. Bull., 71 (2014) 2133-2158.
- P.L. Ritger, N.A. Peppas, A simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs, J. Control. Release, 5 (1987) 23-36.
- S. Morariu, M. Bercea, L.M. Gradinaru, I. Rosca, M. Avadanei, Versatile pol(viny alcohol)/clay physical hydrogels with tailorable structure as potantial candidates for wound healing applications, Mat. Sci. Eng. C-Mater., 109 (2020) 110395.
- M. Kaya, F. Dudakli, M. Asan-Ozusaglam, Y.S. Cakmak, T. Baran, A. Mentes, S. Erdogan, Porous and nanofiber alpha-chitosan obtained from blue crab (Callinectes sapidus) tested for antimicrobial and antioxidant activities, Lwt-Food Sci. Technol., 65 (2016) 1109-1117.
- S. Erdogan, Textile finishing with chitosan and silver nanoparticles against Escherichia coli ATCC 8739, Trak. Univ. J. Nat. Sci., 21 (2020) 21-32.
- G. Michailidou, E.N. Koukaras, D.N. Bikiaris, Vanillin chitosan miscible hydrogel blends and their prospects for 3D printing biomedical applications, Int. J. Biol. Macromol., 192 (2021) 1266-1275.
- L.C. Gomes, S.I. Faria, J. Valcarcel, J.A. Vazquez, M.A. Cerqueira, L. Pastrana, A.I. Bourbon, F.J. Mergulhao, The Effect of Molecular Weight on the Antimicrobial Activity of Chitosan from Loligo opalescens for Food Packaging Applications, Mar. Drugs, 19 (2021) 384.
- S.M. Joseph, S. Krishnamoorthy, R. Paranthaman, J.A. Moses, C. Anandharamakrishnan, A review on source-specific chemistry, functionality, and applications of chitin and chitosan, Carbohydr. Polym. Technol. Appl., 2 (2021) 100036.
- I. Aranaz, A.R. Alcántara, M.C. Civera, C. Arias, B. Elorza, A.H. Caballero, N. Acosta, Chitosan: An Overview of Its Properties and Applications, Polymers, 13 (2021) 3256.
- M. Rajabi, M. McConnell, J. Cabral, M.A. Ali, Chitosan hydrogels in 3D printing for biomedical applications, Carbohydr. Polym., 260 (2021) 117768.
- H.Y. Zhou, X.G. Chen, M. Kong, C.S. Liu, D.S. Cha, J.F. Kennedy, Effect of molecular weight and degree of chitosan deacetylation on the preparation and characteristics of chitosan thermosensitive hydrogel as a delivery system, Carbohydr. Polym., 73 (2008) 265-273.
- D. Han, Z. Han, L. Liu, Y. Wang, S Xin, H. Zhang, Z. Yu, Solubility Enhancement of Myricetin by Inclusion Complexation with Heptakis-O-(2-Hydroxypropyl)-β-Cyclodextrin: A Joint Experimental and Theoretical Study, Int. J. Mol. Sci., 21 (2020) 766.
- G. Paun, E. Neagu, A. Tache, G.L. Radu, New type of chitosan/2-hydroxypropyl-β-cyclodextrin composite membrane for gallic acid encapsulation and controlled release, Acta Chim. Slov., 61 (2014) 27-33.
- E.M. Sultanova, M.K. Salakhutdinova, Y.I. Oshchepkova, A.M. Asrorov, M.J. Oripova, U.J. Ishimov, S.I. Salikhov, Chitosan Hydrogel Improves Bioavailability of Megosin, Eur. Pharm. J., 67 (2019) 1-6.
- N.S. Malik, M. Ahmad, M.S. Alqahtani, A. Mahmood, K. Barkat, M.T. Khan, U.R. Tulain, A. Rashid, β-cyclodextrin chitosan-based hydrogels with tunable pH-responsive properties for controlled release of acyclovir: design, characterization, safety, and pharmacokinetic evaluation, Drug Deliv., 28 (2021) 1093-1108.
- Y. Wang, J. Wang, Z. Yuan, H. Han, T. Li, L. Li, X. Guo, Chitosan cross-linked poly(acrylic acid) hydrogels: Drug release control and mechanism, Colloids Surf. B., 152 (2017) 252-259.
- X. Hu, L. Feng, W. Wei, et al, Synthesis and characterization of a novel semi-IPN hydrogel based on Salecan and poly(N,N-dimethyla-crylamide-co-2-hydroxyethyl methacrylate), Carbohydr. Polym., 105 (2014) 135-144.
- M.E.A. Ali, M.M.S. Aboelfadl, A.M. Selim, H.F. Khalil, G.M. Elkady, Chitosan nanoparticles extracted from shrimp shells, application for removal of Fe(II) and Mn(II) from aqueous phases, Sep. Sci. Technol., 53 (2018) 2870-2881.
- E.C. Elionai, W.N. Mussel, J.M. Resende, S.L. Fialho, J. Barbosa, E. Carignani, M. Geppi, M.I. Yoshida, Characterization of tenofovir disoproxil fumarate and its behavior under heating, Cryst. Growth Des., 15 (2015) 1915-1922.
- M. Bajpai, S. Bajpai, P. Jyotishi, Water absorption and moisture per-meation properties of chitosan/poly(acrylamide-co-itaconic acid) IPC films, Int. J Biol. Macromol., 84 (2016) 1-9.
- Y.X. Wang, Y.P. Qin, Z.J. Kong, Y.J. Wang, L.L. Ma, Glutaraldehyde Cross-linked Silk Fibroin Films for Controlled Release, Advances in Materials and Materials Processing Iv, Pts 1 and 2, 887-888 (2014) 541-546.
- G.R. Fulmer, A.J.M. Miller, N.H. Sherden, H.E. Gottlieb, A. Nudelman, B.M. Stoltz, J.E. Bercaw, Karen I. Goldberg, NMR Chemical Shifts of Trace Impurities: Common Laboratory Solvents, Organics, and Gases in Deuterated Solvents Relevant to the Organometallic Chemist, Organometallics, 29 (2010) 2176-2179.
- J. López-Cervantes, D.I. Sánchez-Machado, R.G. Sánchez-Duarte, M.A. Correa-Murrieta, Study of a fixed-bed column in the adsorption of an azo dye from an aqueous medium using a chitosan-glutaraldehyde biosorbent, Adsorp. Sci. Technol., 36 (2018) 215-232.
- S. Chatterjee, P.C.L. Hui, C.W. Kan, W. Wang, Dual-responsive (pH/temperature) Pluronic F-127 hydrogel drug delivery system for textile-based transdermal therapy, Sci. Rep., 9 (2019) 11658.
- Z. Aytac, S.I. Kusku, E. Durgun, T. Uyar, Encapsulation of gallic acid/cyclodextrin inclusion complex in electrospun polylactic acid nanofibers: Release behavior and antioxidant activity of gallic acid, Mater. Sci. Eng. C-Mater. Biol. Appl., 63 (2016) 231-239.
- K. Sichilongo, Z.G. Keolopile, S. Ndlovu, E. Mwando Jr., C. Shaba, E. Massele, Characterization of tenofovir, tenofovir disoproxil fumarate and emtricitabine in aqueous solutions containing sodium ions using ESI-MS, NMR and Ab initio calculations, Int. J. Mass Spectrom., 410 (2016) 1-11.
- G. Yurtdaş Kırmızılıoğlu, Host-guest inclusion complex of desloratadine with 2(hydroxy)propyl-β-cyclodextrin (HP-β-CD): Preparation, binding behaviors and dissolution properties, J. Res. Pharm., 24 (2020) 693-707.
- B. Tasdelen, N. Kayaman-Apohan, O. Güven, B.M. Baysal, Swelling and diffusion studies of poly(N-isopropylacrylamide/itaconic acid) copolymeric hydrogels in water and aqueous solutions of drugs, J. Appl. Polym. Sci., 91 (2004) 911-915.
- T. Demirci, M. Erginer Hasköylü, M.S. Eroğlu, J. Hemberger, E. Toksoy Öner, Levan-based hydrogels for controlled release of Amphotericin B for dermal local antifungal therapy of Candidiasis, Eur. J. Pharm. Sci., 145 (2020) 105255.
- B. Nigusse, T. Gebre-Mariam, A. Belete, Design, development and optimization of sustained release floating, bioadhesive and swellable matrix tablet of ranitidine hydrochloride. PLoS ONE, 16 (2021) e0253391.
- L.P. Jahromi, M. Ghazali, Hb. Ashrafi, A. Azadi, A comparison of models for the analysis of the kinetics of drug release from PLGA-based nanoparticles, Heliyon, 6 (2020) e03451.
- G. Yasayan, Chitosan films and chitosan/pectin polyelectrolyte complexes encapsulating silver sulfadiazine for wound healing, Istanbul J. Pharm., 50: (2020) 238-244.
- H.Y. Zhou, Z.Y. Wang, X.Y. Duan, L.J. Jiang, P.P. Cao, J.X. Li, J.B. Li, Design and evaluation of chitosan-β-cyclodextrin based thermosensitive hydrogel, Biochem. Eng. J., 111 (2016) 100-107.
- M. Suhail, Y.F. Shao, Q.L. Vu, P.C. Wu, Designing of pH-Sensitive Hydrogels for Colon Targeted Drug Delivery; Characterization and In Vitro Evaluation, Gels, 8 (2022) 155.
- N.S. Heredia, K. Vizuete, M. Flores-Calero, V.K. Pazmiño, F. Pilaquinga, B. Kumar et al, Comparative statistical analysis of the release kinetics models for nanoprecipitated drug delivery systems based on poly(lactic-co-glycolic acid), PLoS ONE, 17 (2022) e0264825.
- J. Bhasarkar, D. Bal, Kinetic investigation of a controlled drug delivery system based on alginate scaffold with embedded voids, J. Appl. Biomater. Funct. Mater., 17 (2019) 2280800018817462.