Establishing an Oxidative Stress Model in the Human Mesencephalic Cell Line (LUHMES): an in vitro study
Yıl 2024,
Cilt: 52 Sayı: 2, 77 - 83, 01.04.2024
Handan Sevim Akan
,
Özgü Zuğa Örsoğlu
,
Özer Aylin Gurpinar
Öz
Oxidative stress-caused neurodegenerative diseases, such as Alzheimer's, Parkinson's disease, and amyotrophic lateral sclerosis, are widely recognized as the most prevalent brain and central nervous system disorders. This is attributed to the vulnerability of neurons to oxidative stress within the body. Although substantial research has been performed on these diseases, it is extremely difficult to establish an oxidative stress model for brain tissues. In primary cultures, it is difficult to obtain neurons and the continuity of the culture is limited for in vitro cell line models. By providing valuable insights into the mechanisms of oxidative stress-induced neurodegenerative diseases, these in vitro models can aid in the development of effective treatment strategies. Here, we developed an in vitro oxidative stress model utilizing hydrogen peroxide on the LUHMES cell line. Our study evaluated the impact of this model on LUHMES cell viability and the equilibrium between oxidants and antioxidants by assaying total oxidant capacity (TOC) and total antioxidant capacity (TAC). Our results provided evidence of the oxidative effect of hydrogen peroxide in critical concentration and proved the efficacy of this model for further investigations.
Etik Beyan
No ethical statement needed.
Destekleyen Kurum
This work was supported by grants from Hacettepe University Scientific Research Projects Coordination Unit (Grand number: FHD.21.19514).
Proje Numarası
FHD.21.19514
Teşekkür
This work was supported by grants from Hacettepe University Scientific Research Projects Coordination Unit (Grand number: FHD.21.19514).
Kaynakça
- A. Phaniendra, D.B. Jestadi, L. Periyasamy, Free radicals: properties, sources, targets, and their implication in various diseases, Indian J Clin Biochem, 30 (2015) 11-26.
- H. Sies, Strategies of antioxidant defense, European j. Mol. Biol. Biochem., 215 (1993) 213-219.
- D.J. Watson, L. Longhi, E.B. Lee, C.T. Fulp, S. Fujimoto, N.C. Royo, M.A. Passini, J.Q. Trojanowski, V.M.-Y. Lee, T.K. McIntosh, Genetically modified NT2N human neuronal cells mediate long-term gene expression as CNS grafts in vivo and improve functional cognitive outcome following experimental traumatic brain injury, J. Neuropathol. Exp. Neurol., 62 (2003) 368-380.
- T. Yoshikawa, Y. Naito, What is oxidative stress?, Japan Med. Assoc. J., 45 (2002) 271-276.
- A. Bhattacharya, J. Banu, M. Rahman, J. Causey, G. Fernandes, Biological effects of conjugated linoleic acids in health and disease, J. Nutr. Biochem., 17 (2006) 789-810.
- J.N. Cobley, M.L. Fiorello, D.M. Bailey, 13 reasons why the brain is susceptible to oxidative stress, Redox Biol., 15 (2018) 490-503.
- W.-C. Tsai, W.-C. Li, H.-Y. Yin, M.-C. Yu, H.-W. Wen, Constructing liposomal nanovesicles of ginseng extract against hydrogen peroxide-induced oxidative damage to L929 cells, Food Chem., 132 (2012) 744-751.
- X. Wang, E.K. Michaelis, Selective neuronal vulnerability to oxidative stress in the brain, Front. Aging Neurosci., 2 (2010) 1224.
- A. Singh, R. Kukreti, L. Saso, S. Kukreti, Oxidative stress: a key modulator in neurodegenerative diseases, Molecules, 24 (2019) 1583.
- R. Bai, J. Guo, X.-Y. Ye, Y. Xie, T. Xie, Oxidative stress: The core pathogenesis and mechanism of Alzheimer’s disease, Ageing Res. Rev., 77 (2022) 101619.
- B.G. Trist, D.J. Hare, K.L. Double, Oxidative stress in the aging substantia nigra and the etiology of Parkinson's disease, Aging Cell, 18 (2019) e13031.
- Y. Gilgun-Sherki, E. Melamed, D. Offen, The role of oxidative stress in the pathogenesis of multiple sclerosis: the need for effective antioxidant therapy, J. Neurol., 251 (2004) 261-268.
- M.M. Nicolai, B. Witt, S. Friese, V. Michaelis, L. Hölz-Armstrong, M. Martin, F. Ebert, T. Schwerdtle, J. Bornhorst, Mechanistic studies on the adverse effects of manganese overexposure in differentiated LUHMES cells, Food Chem. Toxicol., 161 (2022) 112822.
- J. Wang, Y. Zhao, B. Zhang, C. Guo, Protective effect of total phenolic compounds from Inula helenium on hydrogen peroxide-induced oxidative stress in SH-SY5Y cells, Indian J. Pharm. Sci., 77 (2015) 163.
- S.S. Kang, J.Y. Lee, Y.K. Choi, G.S. Kim, B.H. Han, Neuroprotective effects of flavones on hydrogen peroxide-induced apoptosis in SH-SY5Y neuroblostoma cells, Bioorg. Med. Chem. Lett., 14 (2004) 2261-2264.
- N. Takeyama, S. Miki, A. Hirakawa, T. Tanaka, Role of the mitochondrial permeability transition and cytochrome C release in hydrogen peroxide-induced apoptosis, Exp. Cell Res., 274 (2002) 16-24.
- R. Pardillo-Díaz, P. Pérez-García, C. Castro, P. Nunez-Abades, L. Carrascal, Oxidative stress as a potential mechanism underlying membrane hyperexcitability in neurodegenerative diseases, Antioxidants, 11 (2022) 1511.
- Y.H. Jeong, T.I. Kim, Y.-C. Oh, J.Y. Ma, Chrysanthemum indicum prevents hydrogen peroxide-induced neurotoxicity by activating the TrkB/Akt signaling pathway in hippocampal neuronal cells, Nutrients, 13 (2021) 3690.
- K. Sudo, C. Van Dao, A. Miyamoto, M. Shiraishi, Comparative analysis of in vitro neurotoxicity of methylmercury, mercury, cadmium, and hydrogen peroxide on SH-SY5Y cells, J. Vet. Med. Sci., 81 (2019) 828-837.
- A. Verma, M. Verma, A. Singh, Animal tissue culture principles and applications, Anim. Biotechnol., Elsevier2020, pp. 269-293.
- R. Silva, A. Falcao, A. Fernandes, A. Gordo, M. Brito, D. Brites, Dissociated primary nerve cell cultures as models for assessment of neurotoxicity, Toxicol. Lett., 163 (2006) 1-9.
- N.S. Othman, D.K. Mohd Azman, Andrographolide induces G2/M cell cycle arrest and apoptosis in human glioblastoma DBTRG-05MG cell line via ERK1/2/c-Myc/p53 signaling pathway, Molecules, 27 (2022) 6686.
- K. Zhou, H. Ji, T. Mao, Z. Bai, Effects of matrine on the proliferation and apoptosis of human medulloblastoma cell line D341, Int. J. Clin. Exp. Med., 7 (2014) 911.
- R.J. Macaulay, W. Wang, J. Dimitroulakos, L.E. Becker, H. Yeger, Lovastatin-induced apoptosis of human medulloblastoma cell lines in vitro, J. Neurooncol., 42 (1999) 1-11.
- A. Choromanska, J. Kulbacka, J. Saczko, P. Surowiak, Effect of diallyl disulfide and garlic oil on different human astrocytoma cell lines, Biomed. Rep., 13 (2020) 1-1.
- C. Kaid, A. Assoni, M. Marcola, P. Semedo-Kuriki, R.H. Bortolin, V.M. Carvalho, O.K. Okamoto, Proteome and miRNome profiling of microvesicles derived from medulloblastoma cell lines with stem-like properties reveals biomarkers of poor prognosis, Brain Res., 1730 (2020) 146646.
- A. Casciati, M. Tanori, R. Manczak, S. Saada, B. Tanno, P. Giardullo, E. Porcù, E. Rampazzo, L. Persano, G. Viola, Human medulloblastoma cell lines: Investigating on cancer stem cell-like phenotype, Cancers (Basel), 12 (2020) 226.
- A. Peyrl, K. Krapfenbauer, L. Afjehi-Sadat, T. Strobel, I. Slavc, G. Lubec, Protein profiling of the supratentorial primitive neuroectodermal tumor (PNET) cell line PFSK-1, Cancer Genom. Proteom., 1 (2004) 125-136.
- B. Geoerger, K. Kerr, C.-B. Tang, K.-M. Fung, B. Powell, L.N. Sutton, P.C. Phillips, A.J. Janss, Antitumor activity of the rapamycin analog CCI-779 in human primitive neuroectodermal tumor/medulloblastoma models as single agent and in combination chemotherapy, Cancer Res., 61 (2001) 1527-1532.
- X. Pan, M. Wilson, C. McConville, T.N. Arvanitis, J.L. Griffin, R.A. Kauppinen, A.C. Peet, Increased unsaturation of lipids in cytoplasmic lipid droplets in DAOY cancer cells in response to cisplatin treatment, Metabolomics, 9 (2013) 722-729.
- X.-m. Zhang, M. Yin, M.-h. Zhang, Cell-based assays for Parkinson's disease using differentiated human LUHMES cells, Acta Pharmacol. Sin., 35 (2014) 945-956.
- L. Smirnova, G. Harris, J. Delp, M. Valadares, D. Pamies, H.T. Hogberg, T. Waldmann, M. Leist, T. Hartung, A LUHMES 3D dopaminergic neuronal model for neurotoxicity testing allowing long-term exposure and cellular resilience analysis, Arch. Toxicol., 90 (2016) 2725-2743.
- M. Höllerhage, C. Moebius, J. Melms, W.-H. Chiu, J.N. Goebel, T. Chakroun, T. Koeglsperger, W.H. Oertel, T.W. Rösler, M. Bickle, Protective efficacy of phosphodiesterase-1 inhibition against alpha-synuclein toxicity revealed by compound screening in LUHMES cells, Sci. Rep., 7 (2017) 11469.
- M. Sameti, P.R. Castello, M. Lanoue, T. Karpova, C.F. Martino, Assessing Bioenergetic Function in Response to Reactive Oxygen Species in Neural Cells, React. Oxyg. Species, 11 (2021) r14-r22.
- I. Vazquez‐Villasenor, C.J. Garwood, J.E. Simpson, P.R. Heath, H. Mortiboys, S.B. Wharton, Persistent DNA damage alters the neuronal transcriptome suggesting cell cycle dysregulation and altered mitochondrial function, Eur. J. Neurosci., 54 (2021) 6987-7005.
- J. Schlachetzki, S.W. Saliba, A.C.P.d. Oliveira, Studying neurodegenerative diseases in culture models, Braz J Psychiatry, 35 (2013) S92-S100.
Yıl 2024,
Cilt: 52 Sayı: 2, 77 - 83, 01.04.2024
Handan Sevim Akan
,
Özgü Zuğa Örsoğlu
,
Özer Aylin Gurpinar
Proje Numarası
FHD.21.19514
Kaynakça
- A. Phaniendra, D.B. Jestadi, L. Periyasamy, Free radicals: properties, sources, targets, and their implication in various diseases, Indian J Clin Biochem, 30 (2015) 11-26.
- H. Sies, Strategies of antioxidant defense, European j. Mol. Biol. Biochem., 215 (1993) 213-219.
- D.J. Watson, L. Longhi, E.B. Lee, C.T. Fulp, S. Fujimoto, N.C. Royo, M.A. Passini, J.Q. Trojanowski, V.M.-Y. Lee, T.K. McIntosh, Genetically modified NT2N human neuronal cells mediate long-term gene expression as CNS grafts in vivo and improve functional cognitive outcome following experimental traumatic brain injury, J. Neuropathol. Exp. Neurol., 62 (2003) 368-380.
- T. Yoshikawa, Y. Naito, What is oxidative stress?, Japan Med. Assoc. J., 45 (2002) 271-276.
- A. Bhattacharya, J. Banu, M. Rahman, J. Causey, G. Fernandes, Biological effects of conjugated linoleic acids in health and disease, J. Nutr. Biochem., 17 (2006) 789-810.
- J.N. Cobley, M.L. Fiorello, D.M. Bailey, 13 reasons why the brain is susceptible to oxidative stress, Redox Biol., 15 (2018) 490-503.
- W.-C. Tsai, W.-C. Li, H.-Y. Yin, M.-C. Yu, H.-W. Wen, Constructing liposomal nanovesicles of ginseng extract against hydrogen peroxide-induced oxidative damage to L929 cells, Food Chem., 132 (2012) 744-751.
- X. Wang, E.K. Michaelis, Selective neuronal vulnerability to oxidative stress in the brain, Front. Aging Neurosci., 2 (2010) 1224.
- A. Singh, R. Kukreti, L. Saso, S. Kukreti, Oxidative stress: a key modulator in neurodegenerative diseases, Molecules, 24 (2019) 1583.
- R. Bai, J. Guo, X.-Y. Ye, Y. Xie, T. Xie, Oxidative stress: The core pathogenesis and mechanism of Alzheimer’s disease, Ageing Res. Rev., 77 (2022) 101619.
- B.G. Trist, D.J. Hare, K.L. Double, Oxidative stress in the aging substantia nigra and the etiology of Parkinson's disease, Aging Cell, 18 (2019) e13031.
- Y. Gilgun-Sherki, E. Melamed, D. Offen, The role of oxidative stress in the pathogenesis of multiple sclerosis: the need for effective antioxidant therapy, J. Neurol., 251 (2004) 261-268.
- M.M. Nicolai, B. Witt, S. Friese, V. Michaelis, L. Hölz-Armstrong, M. Martin, F. Ebert, T. Schwerdtle, J. Bornhorst, Mechanistic studies on the adverse effects of manganese overexposure in differentiated LUHMES cells, Food Chem. Toxicol., 161 (2022) 112822.
- J. Wang, Y. Zhao, B. Zhang, C. Guo, Protective effect of total phenolic compounds from Inula helenium on hydrogen peroxide-induced oxidative stress in SH-SY5Y cells, Indian J. Pharm. Sci., 77 (2015) 163.
- S.S. Kang, J.Y. Lee, Y.K. Choi, G.S. Kim, B.H. Han, Neuroprotective effects of flavones on hydrogen peroxide-induced apoptosis in SH-SY5Y neuroblostoma cells, Bioorg. Med. Chem. Lett., 14 (2004) 2261-2264.
- N. Takeyama, S. Miki, A. Hirakawa, T. Tanaka, Role of the mitochondrial permeability transition and cytochrome C release in hydrogen peroxide-induced apoptosis, Exp. Cell Res., 274 (2002) 16-24.
- R. Pardillo-Díaz, P. Pérez-García, C. Castro, P. Nunez-Abades, L. Carrascal, Oxidative stress as a potential mechanism underlying membrane hyperexcitability in neurodegenerative diseases, Antioxidants, 11 (2022) 1511.
- Y.H. Jeong, T.I. Kim, Y.-C. Oh, J.Y. Ma, Chrysanthemum indicum prevents hydrogen peroxide-induced neurotoxicity by activating the TrkB/Akt signaling pathway in hippocampal neuronal cells, Nutrients, 13 (2021) 3690.
- K. Sudo, C. Van Dao, A. Miyamoto, M. Shiraishi, Comparative analysis of in vitro neurotoxicity of methylmercury, mercury, cadmium, and hydrogen peroxide on SH-SY5Y cells, J. Vet. Med. Sci., 81 (2019) 828-837.
- A. Verma, M. Verma, A. Singh, Animal tissue culture principles and applications, Anim. Biotechnol., Elsevier2020, pp. 269-293.
- R. Silva, A. Falcao, A. Fernandes, A. Gordo, M. Brito, D. Brites, Dissociated primary nerve cell cultures as models for assessment of neurotoxicity, Toxicol. Lett., 163 (2006) 1-9.
- N.S. Othman, D.K. Mohd Azman, Andrographolide induces G2/M cell cycle arrest and apoptosis in human glioblastoma DBTRG-05MG cell line via ERK1/2/c-Myc/p53 signaling pathway, Molecules, 27 (2022) 6686.
- K. Zhou, H. Ji, T. Mao, Z. Bai, Effects of matrine on the proliferation and apoptosis of human medulloblastoma cell line D341, Int. J. Clin. Exp. Med., 7 (2014) 911.
- R.J. Macaulay, W. Wang, J. Dimitroulakos, L.E. Becker, H. Yeger, Lovastatin-induced apoptosis of human medulloblastoma cell lines in vitro, J. Neurooncol., 42 (1999) 1-11.
- A. Choromanska, J. Kulbacka, J. Saczko, P. Surowiak, Effect of diallyl disulfide and garlic oil on different human astrocytoma cell lines, Biomed. Rep., 13 (2020) 1-1.
- C. Kaid, A. Assoni, M. Marcola, P. Semedo-Kuriki, R.H. Bortolin, V.M. Carvalho, O.K. Okamoto, Proteome and miRNome profiling of microvesicles derived from medulloblastoma cell lines with stem-like properties reveals biomarkers of poor prognosis, Brain Res., 1730 (2020) 146646.
- A. Casciati, M. Tanori, R. Manczak, S. Saada, B. Tanno, P. Giardullo, E. Porcù, E. Rampazzo, L. Persano, G. Viola, Human medulloblastoma cell lines: Investigating on cancer stem cell-like phenotype, Cancers (Basel), 12 (2020) 226.
- A. Peyrl, K. Krapfenbauer, L. Afjehi-Sadat, T. Strobel, I. Slavc, G. Lubec, Protein profiling of the supratentorial primitive neuroectodermal tumor (PNET) cell line PFSK-1, Cancer Genom. Proteom., 1 (2004) 125-136.
- B. Geoerger, K. Kerr, C.-B. Tang, K.-M. Fung, B. Powell, L.N. Sutton, P.C. Phillips, A.J. Janss, Antitumor activity of the rapamycin analog CCI-779 in human primitive neuroectodermal tumor/medulloblastoma models as single agent and in combination chemotherapy, Cancer Res., 61 (2001) 1527-1532.
- X. Pan, M. Wilson, C. McConville, T.N. Arvanitis, J.L. Griffin, R.A. Kauppinen, A.C. Peet, Increased unsaturation of lipids in cytoplasmic lipid droplets in DAOY cancer cells in response to cisplatin treatment, Metabolomics, 9 (2013) 722-729.
- X.-m. Zhang, M. Yin, M.-h. Zhang, Cell-based assays for Parkinson's disease using differentiated human LUHMES cells, Acta Pharmacol. Sin., 35 (2014) 945-956.
- L. Smirnova, G. Harris, J. Delp, M. Valadares, D. Pamies, H.T. Hogberg, T. Waldmann, M. Leist, T. Hartung, A LUHMES 3D dopaminergic neuronal model for neurotoxicity testing allowing long-term exposure and cellular resilience analysis, Arch. Toxicol., 90 (2016) 2725-2743.
- M. Höllerhage, C. Moebius, J. Melms, W.-H. Chiu, J.N. Goebel, T. Chakroun, T. Koeglsperger, W.H. Oertel, T.W. Rösler, M. Bickle, Protective efficacy of phosphodiesterase-1 inhibition against alpha-synuclein toxicity revealed by compound screening in LUHMES cells, Sci. Rep., 7 (2017) 11469.
- M. Sameti, P.R. Castello, M. Lanoue, T. Karpova, C.F. Martino, Assessing Bioenergetic Function in Response to Reactive Oxygen Species in Neural Cells, React. Oxyg. Species, 11 (2021) r14-r22.
- I. Vazquez‐Villasenor, C.J. Garwood, J.E. Simpson, P.R. Heath, H. Mortiboys, S.B. Wharton, Persistent DNA damage alters the neuronal transcriptome suggesting cell cycle dysregulation and altered mitochondrial function, Eur. J. Neurosci., 54 (2021) 6987-7005.
- J. Schlachetzki, S.W. Saliba, A.C.P.d. Oliveira, Studying neurodegenerative diseases in culture models, Braz J Psychiatry, 35 (2013) S92-S100.