Yıl 2020,
Cilt: 2 Sayı: 2, 1 - 11, 09.12.2020
Nour Elhouda Djaa
,
Abderrahim Zagane
Kaynakça
- [1] Abbassi, M. T. K., & Sarih, M. (2005). On natural metrics on tangent bundles of Riemannian manifolds. Archivum Mathematicum, 41(1), 71-92.
- [2] Cengiz, N., & Salimov, A. A. (2003). Diagonal lift in the tensor bundle and its applications. Applied mathematics and computation, 142(2-3), 309-319.
- [3] Cheeger, J., & Gromoll, D. (1972). On the structure of complete manifolds of nonnegative curvature. Annals of Mathematics, 413-443.
- [4] Djaa, M. & Gancarzewicz, J. (1985). The geometry of tangent bundles of order r. Boletin Academia , Galega de Ciencias, 4, 147-165.
- [5] Dombrowski, P. (1962). On the Geometry of the Tangent Bundle, Journal für die reine und angewandte Mathematik, 210, 73-88.
- [6] Gezer, A. (2013). On the tangent bundle with deormed sasaki metric, International Electronic Journal of Geometry, 6(2), 19-31.
- [7] Gudmundsson, S. & Kappos, E. (2002). On the Geometry of the Tangent Bundle with the Cheeger-Gromoll Metric. Tokyo Journal of Mathematics, 25(1), 75-83.
- [8] Kobayashi, S. & Nomizu, K. (1963). Foundation of differential geometry. Interscience Publisher, New York-London.
- [9] Salimov, A.A., Gezer, A. & Akbulut, K. (2009). Geodesics of Sasakian metrics on tensor bundles. Mediterranean Journal of Mathematics, 6(2), 135-147.
- [10] Salimov, A. A. & Kazimova, S. (2009). Geodesics of the Cheeger-Gromoll Metric. Turkish Journal of Mathematics, 33(1), 99-105
- [11] Salimov, A. A & Gezer, A. (2011). On the geometry of the (1, 1)-tensor bundle with Sasaki type metric. Chinese Annals of Mathematics, Series B, 32(3), 369.
- [12] Salimov, A. A., & Agca, F. (2011). Some Properties of Sasakian Metrics in Cotangent Bundles. Mediterranean Journal of Mathematics, 8(2), 243-255.
- [13] Sasaki, S. (1962). On the differential geometry of tangent bundles of Riemannian manifolds II. Tohoku Mathematical Journal, Second Series, 14(2), 146-155.
- [14] Sekizawa, M. (1991). Curvatures of Tangent Bundles with Cheeger-Gromoll Metric. Tokyo Journal of Mathematics, 14(2), 407-417.
- [15] Tachibana, S. (1960). Analytic tensor and its generalization. Tohoku Mathematical Journal, Second Series, 12(2), 208-221.
- [16] Yano, K. & Ishihara, S. (1973). Tangent and cotangent bundles. Marcel dekker, Inc., New York.
- [17] Zagane, A. & Djaa, M. (2017). On geodesics of warped Sasaki metric. Mathematical sciences and Applications E-Notes. 5, 85-92.
- [18] Zagane, A. & Djaa, M. (2018). Geometry of Mus-Sasaki metric. Communication in Mathematics. 26(2), 113-126.
Mus-Sasaki Metric and Complex Structures
Yıl 2020,
Cilt: 2 Sayı: 2, 1 - 11, 09.12.2020
Nour Elhouda Djaa
,
Abderrahim Zagane
Öz
In this paper we study the geometry of some paracomplex structures on tangent fiber bundle $TM$ equipped with a Mus-Sasaki metrics.
Destekleyen Kurum
This note was supported by G.A.C.A Laboratory of Saida University and National Algerian P.R.F.U. project.
Kaynakça
- [1] Abbassi, M. T. K., & Sarih, M. (2005). On natural metrics on tangent bundles of Riemannian manifolds. Archivum Mathematicum, 41(1), 71-92.
- [2] Cengiz, N., & Salimov, A. A. (2003). Diagonal lift in the tensor bundle and its applications. Applied mathematics and computation, 142(2-3), 309-319.
- [3] Cheeger, J., & Gromoll, D. (1972). On the structure of complete manifolds of nonnegative curvature. Annals of Mathematics, 413-443.
- [4] Djaa, M. & Gancarzewicz, J. (1985). The geometry of tangent bundles of order r. Boletin Academia , Galega de Ciencias, 4, 147-165.
- [5] Dombrowski, P. (1962). On the Geometry of the Tangent Bundle, Journal für die reine und angewandte Mathematik, 210, 73-88.
- [6] Gezer, A. (2013). On the tangent bundle with deormed sasaki metric, International Electronic Journal of Geometry, 6(2), 19-31.
- [7] Gudmundsson, S. & Kappos, E. (2002). On the Geometry of the Tangent Bundle with the Cheeger-Gromoll Metric. Tokyo Journal of Mathematics, 25(1), 75-83.
- [8] Kobayashi, S. & Nomizu, K. (1963). Foundation of differential geometry. Interscience Publisher, New York-London.
- [9] Salimov, A.A., Gezer, A. & Akbulut, K. (2009). Geodesics of Sasakian metrics on tensor bundles. Mediterranean Journal of Mathematics, 6(2), 135-147.
- [10] Salimov, A. A. & Kazimova, S. (2009). Geodesics of the Cheeger-Gromoll Metric. Turkish Journal of Mathematics, 33(1), 99-105
- [11] Salimov, A. A & Gezer, A. (2011). On the geometry of the (1, 1)-tensor bundle with Sasaki type metric. Chinese Annals of Mathematics, Series B, 32(3), 369.
- [12] Salimov, A. A., & Agca, F. (2011). Some Properties of Sasakian Metrics in Cotangent Bundles. Mediterranean Journal of Mathematics, 8(2), 243-255.
- [13] Sasaki, S. (1962). On the differential geometry of tangent bundles of Riemannian manifolds II. Tohoku Mathematical Journal, Second Series, 14(2), 146-155.
- [14] Sekizawa, M. (1991). Curvatures of Tangent Bundles with Cheeger-Gromoll Metric. Tokyo Journal of Mathematics, 14(2), 407-417.
- [15] Tachibana, S. (1960). Analytic tensor and its generalization. Tohoku Mathematical Journal, Second Series, 12(2), 208-221.
- [16] Yano, K. & Ishihara, S. (1973). Tangent and cotangent bundles. Marcel dekker, Inc., New York.
- [17] Zagane, A. & Djaa, M. (2017). On geodesics of warped Sasaki metric. Mathematical sciences and Applications E-Notes. 5, 85-92.
- [18] Zagane, A. & Djaa, M. (2018). Geometry of Mus-Sasaki metric. Communication in Mathematics. 26(2), 113-126.