The aim of this paper is to describe two geometric notions, holomorphic Norden structures and K\"{a}hler-Norden structures on Hom-Lie groups, and study their relationships in the left invariant setting. We study K\"{a}hler-Norden structures with abelian complex structures and give the curvature properties of holomorphic Norden structures on Hom-Lie groups. Finally, we show that any left-invariant holomorphic Hom-Lie group is a flat (holomorphic Norden Hom-Lie algebra carries a Hom-Left-symmetric algebra) if its left-invariant complex structure (complex structure) is abelian.
Hom-Lie group Hom-Lie algebra holomorphic Norden structure K\"{a}hler-Norden structure
Birincil Dil | İngilizce |
---|---|
Konular | Cebirsel ve Diferansiyel Geometri |
Bölüm | Matematik |
Yazarlar | |
Erken Görünüm Tarihi | 14 Nisan 2024 |
Yayımlanma Tarihi | |
Yayımlandığı Sayı | Yıl 2024 Erken Görünüm |