Araştırma Makalesi
BibTex RIS Kaynak Göster

APPROXIMATION BY INTERPOLATING POLYNOMIALS IN WEIGHTED SYMMETRIC SMIRNOV SPACES

Yıl 2012, Cilt: 41 Sayı: 5, 643 - 649, 01.05.2012

Öz

Kaynakça

  • Akg¨un, R. and Israfilov, D. M. Approximation by interpolating polynomials in Smirnov- Orlicz class, J. Korean Math. Soc. 43, 412–424, 2006.
  • Benneth, C. and Sharpley, R. Interpolation of operators (Pure and Applied Mathematics 129, Academic Press, Boston, 1988).
  • Boyd, D. W. Spaces between a pair of reflexive Lebesgue spaces, Proc. Amer. Math. Soc. 18, 215–219, 1967.
  • Gaier, D. Lectures on complex approximation (Birkh¨auser, Boston, Basel, Stuttgart, 1987). [5] Garnett, J. B. Bounded analytic functions (Pure and Applied Mathematics 96, Academic Press Inc. [Harcourt Brace Jovanovich, Publishers], New York, London, 1981). [6] Karlovich,
  • A. Yu. Algebras of singular integral operators with PC coefficients in rearrangement-invariant spaces with Muckenhoupt weights, J. Operator Theory 47, 303– 323, 2002.
  • H. Ko¸c, Convergence of interpolating polynomials in symmetric function spaces (M.Sci. Thesis, Balikesir University, Institute of Science, 2011).
  • Pommerenke, Ch. Conforme abbildung und Fekete-punkte, Mathematische Zeitschrift 89, 422–438, 1965.
  • Pommerenke, Ch. Boundary behaviour of conformal maps (Grundlehren der Mathema- tischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 299, Springer- Verlag, Berlin, 1992).
  • Shen, X. C. and Zhong, L. On Lagrange interpolation in Ep(D) for 1 < p < ∞, (Chinese) Adv. Math. 18, 342–345, 1989.
  • Smirnov, V. I. and Lebedev, N. A. Functions of complex variable: Constructive theory (The M. I. T. Press, Cambridge, Mass., 1968).
  • Suetin, P. K. Series of Faber Polynomials (Gordon and Breach, 1 Reading, 1998).
  • Zhong, L. and Zhu, L. Convergence of the interpolants based on the roots of Faber polyno- mials, Acta Math. Hungarica 65 (3), 273–283, 1994.
  • Zhu, L. Y. A new class of interpolation nodes, (in Chinese) Advances in Mathematics 24 (4), 327-ˆu334, 1995.

APPROXIMATION BY INTERPOLATING POLYNOMIALS IN WEIGHTED SYMMETRIC SMIRNOV SPACES

Yıl 2012, Cilt: 41 Sayı: 5, 643 - 649, 01.05.2012

Öz

Let Γ ⊂ C be a closed BR curve without cusps. In this work approximation by complex interpolating polynomials in a Weighted Symmetric Smirnov Space is studied. It is proved that the convergence rate of complex interpolating polynomials and the convergence rate of best approximating algebraic polynomials are the same in the norm of Symmetric Smirnov Spaces.

Kaynakça

  • Akg¨un, R. and Israfilov, D. M. Approximation by interpolating polynomials in Smirnov- Orlicz class, J. Korean Math. Soc. 43, 412–424, 2006.
  • Benneth, C. and Sharpley, R. Interpolation of operators (Pure and Applied Mathematics 129, Academic Press, Boston, 1988).
  • Boyd, D. W. Spaces between a pair of reflexive Lebesgue spaces, Proc. Amer. Math. Soc. 18, 215–219, 1967.
  • Gaier, D. Lectures on complex approximation (Birkh¨auser, Boston, Basel, Stuttgart, 1987). [5] Garnett, J. B. Bounded analytic functions (Pure and Applied Mathematics 96, Academic Press Inc. [Harcourt Brace Jovanovich, Publishers], New York, London, 1981). [6] Karlovich,
  • A. Yu. Algebras of singular integral operators with PC coefficients in rearrangement-invariant spaces with Muckenhoupt weights, J. Operator Theory 47, 303– 323, 2002.
  • H. Ko¸c, Convergence of interpolating polynomials in symmetric function spaces (M.Sci. Thesis, Balikesir University, Institute of Science, 2011).
  • Pommerenke, Ch. Conforme abbildung und Fekete-punkte, Mathematische Zeitschrift 89, 422–438, 1965.
  • Pommerenke, Ch. Boundary behaviour of conformal maps (Grundlehren der Mathema- tischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 299, Springer- Verlag, Berlin, 1992).
  • Shen, X. C. and Zhong, L. On Lagrange interpolation in Ep(D) for 1 < p < ∞, (Chinese) Adv. Math. 18, 342–345, 1989.
  • Smirnov, V. I. and Lebedev, N. A. Functions of complex variable: Constructive theory (The M. I. T. Press, Cambridge, Mass., 1968).
  • Suetin, P. K. Series of Faber Polynomials (Gordon and Breach, 1 Reading, 1998).
  • Zhong, L. and Zhu, L. Convergence of the interpolants based on the roots of Faber polyno- mials, Acta Math. Hungarica 65 (3), 273–283, 1994.
  • Zhu, L. Y. A new class of interpolation nodes, (in Chinese) Advances in Mathematics 24 (4), 327-ˆu334, 1995.
Toplam 13 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular İstatistik
Bölüm Matematik
Yazarlar

Ramazan Akgün Bu kişi benim

Hüseyin Koç

Yayımlanma Tarihi 1 Mayıs 2012
Yayımlandığı Sayı Yıl 2012 Cilt: 41 Sayı: 5

Kaynak Göster

APA Akgün, R., & Koç, H. (2012). APPROXIMATION BY INTERPOLATING POLYNOMIALS IN WEIGHTED SYMMETRIC SMIRNOV SPACES. Hacettepe Journal of Mathematics and Statistics, 41(5), 643-649.
AMA Akgün R, Koç H. APPROXIMATION BY INTERPOLATING POLYNOMIALS IN WEIGHTED SYMMETRIC SMIRNOV SPACES. Hacettepe Journal of Mathematics and Statistics. Mayıs 2012;41(5):643-649.
Chicago Akgün, Ramazan, ve Hüseyin Koç. “APPROXIMATION BY INTERPOLATING POLYNOMIALS IN WEIGHTED SYMMETRIC SMIRNOV SPACES”. Hacettepe Journal of Mathematics and Statistics 41, sy. 5 (Mayıs 2012): 643-49.
EndNote Akgün R, Koç H (01 Mayıs 2012) APPROXIMATION BY INTERPOLATING POLYNOMIALS IN WEIGHTED SYMMETRIC SMIRNOV SPACES. Hacettepe Journal of Mathematics and Statistics 41 5 643–649.
IEEE R. Akgün ve H. Koç, “APPROXIMATION BY INTERPOLATING POLYNOMIALS IN WEIGHTED SYMMETRIC SMIRNOV SPACES”, Hacettepe Journal of Mathematics and Statistics, c. 41, sy. 5, ss. 643–649, 2012.
ISNAD Akgün, Ramazan - Koç, Hüseyin. “APPROXIMATION BY INTERPOLATING POLYNOMIALS IN WEIGHTED SYMMETRIC SMIRNOV SPACES”. Hacettepe Journal of Mathematics and Statistics 41/5 (Mayıs 2012), 643-649.
JAMA Akgün R, Koç H. APPROXIMATION BY INTERPOLATING POLYNOMIALS IN WEIGHTED SYMMETRIC SMIRNOV SPACES. Hacettepe Journal of Mathematics and Statistics. 2012;41:643–649.
MLA Akgün, Ramazan ve Hüseyin Koç. “APPROXIMATION BY INTERPOLATING POLYNOMIALS IN WEIGHTED SYMMETRIC SMIRNOV SPACES”. Hacettepe Journal of Mathematics and Statistics, c. 41, sy. 5, 2012, ss. 643-9.
Vancouver Akgün R, Koç H. APPROXIMATION BY INTERPOLATING POLYNOMIALS IN WEIGHTED SYMMETRIC SMIRNOV SPACES. Hacettepe Journal of Mathematics and Statistics. 2012;41(5):643-9.