Araştırma Makalesi
BibTex RIS Kaynak Göster

Deferred statistical order convergence in Riesz spaces

Yıl 2024, Cilt: 53 Sayı: 5, 1368 - 1377, 15.10.2024
https://doi.org/10.15672/hujms.1322652

Öz

In recent years, researchers have focused on exploring different forms of statistical convergence in Riesz spaces, such as statistical order convergence and statistical unbounded order convergence. This study aims to present the concept of deferred statistical convergence within Riesz spaces, specifically concerning its relationship with order convergence. Furthermore, we delve into the interconnections between deferred statistical order convergence and various other types of statistical convergence. Moreover, we explore in depth the intricate connections between deferred statistical order convergence and other notable forms of statistical convergence. We provide valuable insights into the broader framework of statistical convergence theory in Riesz spaces.

Kaynakça

  • [1] R.P. Agnew, On deferred Cesàro means, Anna. Math. 33 (3), 413-421, 1932.
  • [2] C.D. Aliprantis and O. Burkinshaw, Locally Solid Riesz Spaces with Applications to Economics, Mathematical Surveys and Monographs Centrum, 2003.
  • [3] C.D. Aliprantis and O. Burkinshaw, Positive Operators, Springer, Dordrecht, 2006.
  • [4] A. Aydın, Multiplicative order convergence in f-algebras, Hacet. J. Math. Stat. 49 (3), 998-1005, 2020.
  • [5] A. Aydın, The statistically unbounded $\tau$-convergence on locally solid vector lattices, Turk. J. Math. 44 (3), 949-956, 2020.
  • [6] A. Aydın, The statistical multiplicative order convergence in vector lattice algebras, Fact. Univ. Ser.: Math. Infor. 36 (2), 409-417, 2021.
  • [7] A. Aydın, M. Et, Statistically multiplicative convergence on locally solid Riesz algebras, Turk. J. Math. 45 (4), 1506-1516, 2021.
  • [8] A. Aydın, E. Emelyanov and S. G. Gorokhova, Full lattice convergence on Riesz spaces, Indagat. Math. 32 (3), 658-690, 2021.
  • [9] Z. Ercan, A characterization of u-uniformly completeness of Riesz spaces in terms of statistical u-uniformly pre-completeness, Demons. Math. 42 (2), 383-387, 2009.
  • [10] M. Et, P. Baliarsingh, H. . Kandemir and M. Küçükaslan, On $\mu$-deferred statistical convergence and strongly deferred summable functions, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 115(1), Paper No. 34, 14 pp, 2021.
  • [11] M. Et, M. Cinar and H. S. Kandemir, Deferred statistical convergence of order α in metric spaces, AIMS Math. 5, Paper No. 4, 3731-3740, 2020.
  • [12] H. Fast, Sur la convergence statistique, Colloq. Math. 2, 241-244, 1951.
  • [13] J. Fridy, On statistical convergence, Analysis 5 (4), 301-313, 1985.
  • [14] M. Küçükaslan and M. Yilmazturk, On deferred statistical convergence of sequences, Kyung. Math. J. 56 (2), 357-366, 2016.
  • [15] M. Küçükaslan, U. Deer and U. Dovgoshey, On statistical convergence of metric valued sequences, Ukrain. Math. J. 66 (5), 796-805, 2014.
  • [16] W.A.J. Luxemburg and A.C. Zaanen, Vector Lattices I, North-Holland Pub. Co., Amsterdam, 1971.
  • [17] I.J. Maddox, Statistical convergence in a locally convex space, Math. Proc. Cambr. Phil. Soc. 104 (1), 141-145, 1988.
  • [18] F. Riesz, Sur la Décomposition des Opérations Fonctionelles Linéaires. Bologna, Atti Del Congresso Internazionale Dei Mathematics Press, 1928.
  • [19] H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math. 2, 73-74, 1951.
  • [20] B.C. Tripathy, On statistically convergent sequences, Bul. Calcut. Math. Soc. 90, 259262, 1998.
  • [21] A.C. Zaanen, Riesz Spaces II, North-Holland Publishing C., Amsterdam, 1983.
Yıl 2024, Cilt: 53 Sayı: 5, 1368 - 1377, 15.10.2024
https://doi.org/10.15672/hujms.1322652

Öz

Kaynakça

  • [1] R.P. Agnew, On deferred Cesàro means, Anna. Math. 33 (3), 413-421, 1932.
  • [2] C.D. Aliprantis and O. Burkinshaw, Locally Solid Riesz Spaces with Applications to Economics, Mathematical Surveys and Monographs Centrum, 2003.
  • [3] C.D. Aliprantis and O. Burkinshaw, Positive Operators, Springer, Dordrecht, 2006.
  • [4] A. Aydın, Multiplicative order convergence in f-algebras, Hacet. J. Math. Stat. 49 (3), 998-1005, 2020.
  • [5] A. Aydın, The statistically unbounded $\tau$-convergence on locally solid vector lattices, Turk. J. Math. 44 (3), 949-956, 2020.
  • [6] A. Aydın, The statistical multiplicative order convergence in vector lattice algebras, Fact. Univ. Ser.: Math. Infor. 36 (2), 409-417, 2021.
  • [7] A. Aydın, M. Et, Statistically multiplicative convergence on locally solid Riesz algebras, Turk. J. Math. 45 (4), 1506-1516, 2021.
  • [8] A. Aydın, E. Emelyanov and S. G. Gorokhova, Full lattice convergence on Riesz spaces, Indagat. Math. 32 (3), 658-690, 2021.
  • [9] Z. Ercan, A characterization of u-uniformly completeness of Riesz spaces in terms of statistical u-uniformly pre-completeness, Demons. Math. 42 (2), 383-387, 2009.
  • [10] M. Et, P. Baliarsingh, H. . Kandemir and M. Küçükaslan, On $\mu$-deferred statistical convergence and strongly deferred summable functions, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 115(1), Paper No. 34, 14 pp, 2021.
  • [11] M. Et, M. Cinar and H. S. Kandemir, Deferred statistical convergence of order α in metric spaces, AIMS Math. 5, Paper No. 4, 3731-3740, 2020.
  • [12] H. Fast, Sur la convergence statistique, Colloq. Math. 2, 241-244, 1951.
  • [13] J. Fridy, On statistical convergence, Analysis 5 (4), 301-313, 1985.
  • [14] M. Küçükaslan and M. Yilmazturk, On deferred statistical convergence of sequences, Kyung. Math. J. 56 (2), 357-366, 2016.
  • [15] M. Küçükaslan, U. Deer and U. Dovgoshey, On statistical convergence of metric valued sequences, Ukrain. Math. J. 66 (5), 796-805, 2014.
  • [16] W.A.J. Luxemburg and A.C. Zaanen, Vector Lattices I, North-Holland Pub. Co., Amsterdam, 1971.
  • [17] I.J. Maddox, Statistical convergence in a locally convex space, Math. Proc. Cambr. Phil. Soc. 104 (1), 141-145, 1988.
  • [18] F. Riesz, Sur la Décomposition des Opérations Fonctionelles Linéaires. Bologna, Atti Del Congresso Internazionale Dei Mathematics Press, 1928.
  • [19] H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math. 2, 73-74, 1951.
  • [20] B.C. Tripathy, On statistically convergent sequences, Bul. Calcut. Math. Soc. 90, 259262, 1998.
  • [21] A.C. Zaanen, Riesz Spaces II, North-Holland Publishing C., Amsterdam, 1983.
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Operatör Cebirleri ve Fonksiyonel Analiz
Bölüm Matematik
Yazarlar

Mehmet Küçükaslan 0000-0002-3183-3123

Abdullah Aydın 0000-0002-0769-5752

Erken Görünüm Tarihi 10 Ocak 2024
Yayımlanma Tarihi 15 Ekim 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 53 Sayı: 5

Kaynak Göster

APA Küçükaslan, M., & Aydın, A. (2024). Deferred statistical order convergence in Riesz spaces. Hacettepe Journal of Mathematics and Statistics, 53(5), 1368-1377. https://doi.org/10.15672/hujms.1322652
AMA Küçükaslan M, Aydın A. Deferred statistical order convergence in Riesz spaces. Hacettepe Journal of Mathematics and Statistics. Ekim 2024;53(5):1368-1377. doi:10.15672/hujms.1322652
Chicago Küçükaslan, Mehmet, ve Abdullah Aydın. “Deferred Statistical Order Convergence in Riesz Spaces”. Hacettepe Journal of Mathematics and Statistics 53, sy. 5 (Ekim 2024): 1368-77. https://doi.org/10.15672/hujms.1322652.
EndNote Küçükaslan M, Aydın A (01 Ekim 2024) Deferred statistical order convergence in Riesz spaces. Hacettepe Journal of Mathematics and Statistics 53 5 1368–1377.
IEEE M. Küçükaslan ve A. Aydın, “Deferred statistical order convergence in Riesz spaces”, Hacettepe Journal of Mathematics and Statistics, c. 53, sy. 5, ss. 1368–1377, 2024, doi: 10.15672/hujms.1322652.
ISNAD Küçükaslan, Mehmet - Aydın, Abdullah. “Deferred Statistical Order Convergence in Riesz Spaces”. Hacettepe Journal of Mathematics and Statistics 53/5 (Ekim 2024), 1368-1377. https://doi.org/10.15672/hujms.1322652.
JAMA Küçükaslan M, Aydın A. Deferred statistical order convergence in Riesz spaces. Hacettepe Journal of Mathematics and Statistics. 2024;53:1368–1377.
MLA Küçükaslan, Mehmet ve Abdullah Aydın. “Deferred Statistical Order Convergence in Riesz Spaces”. Hacettepe Journal of Mathematics and Statistics, c. 53, sy. 5, 2024, ss. 1368-77, doi:10.15672/hujms.1322652.
Vancouver Küçükaslan M, Aydın A. Deferred statistical order convergence in Riesz spaces. Hacettepe Journal of Mathematics and Statistics. 2024;53(5):1368-77.