The present study carried out GC-MS analysis, antioxidant, antidiabetic, and ADMET study of the crude ethanol extract (CRE), ethyl acetate (EAF), and aqueous (AQF) fractions of Diospyros mespiliformis (DM). Grandiflorenic and cis, cis-linoleic acids were the most abundant of the 59 and 40 compounds identified in the EAF and AQF, respectively. The EAF and CRE exhibited significantly (p< 0.05) higher total antioxidant capacity than the AQF. Furthermore, the EAF exhibited a significantly (p < 0.05) higher percentage inhibition via the ferric thiocyanate assay than the CRE and AQF. All the extracts showed significantly (p < 0.05) lower malondialdehyde concentrations than AA in the thiobarbituric acid assay. Diazoprogesterone identified in the EAF exhibited the lowest binding affinity and inhibition constant, interacting with myeloperoxidase (MPO), xanthine (XO), and 11-β-hydroxysteroid dehydrogenase (HSD1), and sirtuin 6 (SIRT6). The molecular dynamics simulations showed residue fluctuations of the diazoprogesterone docked complexes with the highest observed at Ser42, Cys1325, Ser281, and Leu78 for MPO, XO, HSD1, and SIRT6, respectively. Moreover, diazoprogesterone was predicted to possess good ADMET properties. Conclusively, DM possesses significant antioxidant and antidiabetic potential, containing compounds that might be a source of novel therapeutics against oxidative stress and diabetes.
Diabetes Diazoprogesterone Molecular docking Molecular dynamics Oxidative stress
Tertiary Education Trust Fund of Nigeria
The present study carried out GC-MS analysis, antioxidant, antidiabetic, and ADMET study of the crude ethanol extract (CRE), ethyl acetate (EAF), and aqueous (AQF) fractions of Diospyros mespiliformis (DM). Grandiflorenic (25.36%) and cis, cis-linoleic (27.13%) acids were the most abundant of the 59 and 40 compounds identified in the EAF and AQF, respectively. The EAF and CRE exhibited total antioxidant capacity of 77.78 ±0.01 ascorbic acid equivalent (mg AAE/g extract) and 60.20 ±0.01 mg AAE/g extract, respectively, significantly (p < 0.05) than the AQF (29.63 ±0.01 mg AAE/g extract). Furthermore, the EAF (38.27% ±2.44) exhibited a significantly (p < 0.05) higher percentage inhibition via the ferric thiocyanate assay than the CRE (17.45% ±2.18) and AQF (15.91% ±2.11). All the extracts showed significantly (p < 0.05) lower malondialdehyde concentrations than AA in the thiobarbituric acid assay. Additionally, the AQF exhibited a significantly higher percentage of H2O2 scavenging than the AA and EAF at 100 µg/ml. Diazoprogesterone (compound III) identified in the EAF exhibited the lowest respective binding affinity and inhibition constant, interacting with myeloperoxidase (-9 kcal/mol and 0.25 µM), xanthine oxidase (-9.9 kcal/mol and 0.05 µM), 11-β-hydroxysteroid dehydrogenase (-10 kcal/mol and 0.05µM), and sirtuin 6 (-10 kcal/mol and 0.05 µM). The molecular dynamics simulations showed residue fluctuations of the diazoprogesterone-docked complexes with the highest observed at Ser42 (5.14 Å), Cys1325 (8.96 Å), Ser281 (7.71 Å), and Leu78 (3.91 Å) for myeloperoxidase, xanthine oxidase, 11-β-hydroxysteroid dehydrogenase, and sirtuin 6, respectively compared to the undocked targets. Moreover, diazoprogesterone was predicted to possess good ADMET properties. Conclusively, DM possesses significant antioxidant and antidiabetic potential, containing compounds that might be a source of novel therapeutics against oxidative stress and diabetes.
Diyabet Diazoprogesteron Diospyros mespiliformis Moleküler yerleştirme Moleküler dinamik Oksidatif stres
Birincil Dil | İngilizce |
---|---|
Konular | Eczacılık Biyokimyası, Farmasotik Kimya |
Bölüm | Research Articles |
Yazarlar | |
Yayımlanma Tarihi | 1 Eylül 2024 |
Kabul Tarihi | 8 Temmuz 2024 |
Yayımlandığı Sayı | Yıl 2024 Cilt: 44 Sayı: 3 |