Araştırma Makalesi
BibTex RIS Kaynak Göster

Bronşektazi hastalarda Serum Amino Asit Profilinin İncelenmesi

Yıl 2023, Cilt: 20 Sayı: 2, 389 - 396, 31.08.2023
https://doi.org/10.35440/hutfd.1282371

Öz

Amaç
Bronşektazi, kronik öksürük, balgam üretimi ve tekrarlayan solunum yolu enfeksiyonları ile ilişkili bronşların geri dönüşümsüz patolojik genişlemesi ile karakterize kronik bir solunum yolu hastalığıdır.
Amino asitler, sağlık ve hastalıkta katabolik ve anabolik süreçlerde önemli bir rol oynar. Amino asitlerin bazı enfeksiyon ve hastalıklarda nasıl ve nerede metabolize edildiğine ilişkin veriler mevcut literatürde belirtilmiştir. Bu nedenle bronşektazili hastalarda bazı farklı amino asit profillerinin plazma düzeylerini değerlendirdik.
Gereç ve Yöntem:
Bronşektazili 50 hastadan ve mevcut hastalık öyküsü veya herhangi bir patolojik durumu olmayan 30 sağlıklı bireyden kan örnekleri alındı. Plazma amino asit profilleri LC-MS/MS cihazında ölçüldü.
Bulgular:
Bronşektazili hastalarda plasma amino asit profilineki amino asitlerin alanin, arjinin, sitrulin, glutamin, glysine, lizin, ornitin, fenilalanin, proline, hidroksi prolin, valin, anserin, 1-metil histidinin kontrol grubu ile karşılaştırıldığında anlamlı olarak arttığını (P<0.01), ancak serin, sistein, hitamin, taurin, glutamik asit ve alfa amino adipik asitin kontrol grubu ile karşılaştırıldığında anlamlı olarak düştüğü saptandı (P<0.01). Diğer amino asitler histidin, ve metyonin istatiksel olarak anlamlı bir değişiklik olmadı.
Sonuç
Amino asitler proteinlerin başlıca yapı taşlarını oluşturur. Kronik inflamatuarda sitrulin, arginin, triptofan, gylisin, lizin fenil alanin metabolizmaları da rol alır. Bu amino asitlerin endotelde önemli yer tutmaktadır, plasma amino asitlerinin seviyeleri vücuttaki amino asitlerin akışına tesir eden tüm faktörlerin net tesirini göstermektedir. İnflamatuar mekanizmlarda metabolizmanın yeni tedavi uygulama rolünü açıklığa kavuşturmak için özellikle broşktazi da amino asit profilinin incelenmesi, tanı ve tedavi sürelerini kısaltmada katkı sağlayabileceğıni ve daha geniş çaplı araştırmalar yapılması görüşündeyiz

Destekleyen Kurum

ÇALIŞMA EKİBİ

Kaynakça

  • 1. ChandrasekaranR, AogáinM M, ChalmersJ D, ElbornS J. ChotirmallS H. Geographicvariation in theaetiology, epi-demiologyandmicrobiology of bronchiectasis. BMC Pulm-Med. 2018; 18: 83. Publishedonline 2018;22. doi: 10.1186/s12890-018-0638-0.
  • 2. Shteinberg M, Flume PA, Chalmers J D. Is bronchiectasis really a disease?EurRespirRev. 2020; 31; 29(155): 190051. Publishedonline 2020 Jan 29. doi: 10.1183/16000617.0051-2019.
  • 3. ChangAB,Redding.GJ.Bronchiectasis andChronicSuppura-tiveLungDisease. Kendig'sDisorders of theRespiratoryTract in Children. 2019 :439–59. doi: 10.1016/B978-0-323-44887-1.00026-2.
  • 4. CamargoA A, Castro RAS, VieiraR P,Oliveira-JúniorM C, Aparecida de A, et al.Systemic Inflammation and Oxidati ve Stress inAdults with Bronchiectasis: Association with Clinical and Functional Features. Clinics (Sao Paulo) 2021; 76: e2474. doi: 10.6061/clinics/2021/e2474.
  • 5. OrianoM, Amati 1F, GramegnaA, Anthony De Soyza, Man-teroM, SibilaO, Sanjay H. Et al. Protease–Antiprotease Im-balance in Bronchiectasis. J. Mol. Sci. 2021, 22, 5996. https://doi.org/10.3390/ijms22115996.
  • 6. Gramegna A, Aliberti S, Seia M, Porcaro L, Bianchi V, Cas-tellani C et al. When and how ruling out cystic fibrosis in adult patients with bronchiectasis. Multidiscip Respir Med. 2018; 13(Suppl 1): 29. doi: 10.1186/s40248-018-0142.
  • 7. Guan W-J, LiJ-C, Liu F, Zhou J, Liu Y-P, Chao L, et al.. Next-generation sequencing foridentifying genetic mutations in adultswith bronchiectasis. J ThoracDis. 2018; 10(5): 2618–30. doi: 10.21037/jtd.2018.04.134.
  • 8. de Camargo A A, de Castro R A S, Vieira R P, Oliveira-Júnior M C, de Araujo A A, De Angelis K, et al. Systemic Inflam-mation and oxidative stress in adults with bronchiectasis: Association with clinical and functional features. Clinics (Sao Paulo) 2021; 76: e2474. doi: 10.6061/clinics/2021/e2474
  • 9. Garth J, Barnes JW, Krick S. Targeting cytokines as evol-ving treatment strategies in chronic Inflammatory airway diseases. Int J MolSci. 2018 Nov; 19(11): 3402. doi: 10.3390/ijms19113402.
  • 10. Wakabayashi H, Matsuzawa Y, Hayakawa S, KoIrie T, Riki-take H, Tatsuno I. Serum oxidativestress in patients with pulmonary Mycobacteriumavium complex disease. Heli-yon. 2019; 5(11): e02775. doi: 10.1016/j.heliyon.2019.e02775.
  • 11. Cavan S, Reilly C, Cynthia B, Williams CRTT, and Chris H. Wendt, MD3 Metabolomics Analysis Identifies Novel Plasma Biomarkers of Cystic Fibrosis Pulmonary Exacerba-tion Theresa A. Laguna, MD, MSCS1. Pediatr Pulmonol. 50(9): 869–77. doi:10.1002/ppul.23225.
  • 12. Paris D, Palomba L, Mirra V, Borrelli M, Corcione A, Santa-maria F, Maniscalco M, et al. NMR Profiling of exhaled breath condensate defines different metabolic phenoty-pes of non-cystic fibrosis bronchiectasis. Int J Mol Sci. 2020; 21(22):8600. doi: 10.3390/ijms21228600.
  • 13. Bar-Yoseph R, Vitzki A, Cooper D M, Gur M, Mainzer G, Hakim F, et al. Exercise capacity in patients with cystic fib-rosis vs. non-cystic fibrosis bronchiectasis. PLoS One. 2019; 14(6):237-40.
  • 14. Royle H, Kelly C. The likes of me running and walking? No chance’: exploring the perceptions of adult patients with bronchiectasis towards exercise. ChronicIlln. 2023 Mar; 19(1): 157–171. Publishedonline 2022 Jun 12. doi: 10.1177/17423953221108223.
  • 15. Han X-R, Cen L-J, Pan C-X, Lin Z-H, Li H-M, Zhang R-Let al. Decreased systemic and airway sirtuin 1 expression in adults with bronchiectasis. Front Med (Lausanne) 2021; 8: 768770. Publishedonline 2022 Jan 6. doi: 10.3389/fmed.2021.768770.
  • 16. Oriano M, Amati F, Gramegna A, De Soyza A, Mantero M, et al. Protease–Antiprotease imbalance in bronchiectasis. Int J MolSci. 2021; 22(11): 5996. Publishedonline 2021 1. doi: 10.3390/ijms22115996.
  • 17. Huang Q, Wu X, Gu Y, Wang T, Zhan Y, Chen J, Zeng Z, et al. Detection of the disorders of glycero phospho lipids and amino acids metabolism in Lung tissue from male COPD patients. Front MolBiosci. 2022; 9: 839259. doi: 10.3389/fmolb.2022.839259.
  • 18. Wang W-W, Mao B, Liu Y, Gu S-Y, Lu H-W, Bai J-W, et al. Altered fecal microbiome and metabolome in adult pati-ents with non-cystic fibrosis bronchiectasis. Respir Res. 2022; 23: 317. doi: 10.1186/s12931-022-02229-w.
  • 19. Yan Zheng. Metabolites of glutamate metabolism are associated with incident cardiovascularevents in the PREDIMED PRE vencióncon DI eta MED iterránea (PREDIMED) Trial." Journal of the American Heart Associa-tion 5.9 (2016): e003755.
  • 20. Malmezat, Thierry. Methionine trans sulfuration is increa-sed during sepsis in rats. American Journal of Physiology-Endocrinology And Metabolism 279.6 (2000): E1391-E1397
  • 21. Wu, Guoyao. Important roles for the arginine family of amino acids in swine nutrition and production Livest ock science 112(1-2)2007; 8-22.
  • 22. Bottiglieri, Teodoro. Homocysteine and folate metabolism in depression Progress in Neuro-Psychopharmacology and Biological Psychiatry 29.7 2005: 1103-12.
  • 23. Matthias F, Ronald GT, and Michael D. Wheeler. Molecular evidence for a glycine-gated chloride channel in macrop-hages and leukocytes. American Journal of Physiology-Gastrointestinal and Liver Physiology 283(4)2002; G856-G863.
  • 24. Grimble, Robert F. The effects of sulfur amino acid intake on immune function in humans. The Journal of nutrition 136(6): 2006: 1660S-65S.
  • 25. Levin M, Franklin E C, Frangione B, Pras M. The Amino acid sequence of a major non immunoglobulin component of some amyloid fibrils. J ClinInvest. 51(10) 1972; 2773–76. doi: 10.1172/JCI107098.
  • 26. Esther CR, Turkovic L, Rosenow T, Muhlebach MS, Boucher R C, Ranganathan S, et al. Metabolomic biomarkers predic-tive of early structural lung disease in cysticfibrosis. Eur-Respir J. Author manuscript; available in PMC 2018; 12..Published in final edited form as: EurRespir J. 48(6): 1612–21. 2016. 11. doi: 10.1183/13993003.00524-2016.
  • 27. Anne B. Chang, Gregory J. Redding. Bronchiectasis and chronic suppurative lung disease. Kendig's disorders of the respiratory tract in children. 2019 :439–59.e6. doi: 10.1016/B978-0-323-44887-1.00026-2.
  • 28. Shen X, Li H, Zou W-J, Wu J-M, Wang L, Wang W, et al. Network pharmacology analysis of the therapeutic mec-hanisms under lying beimu-gualou formula activity. against Bronchiectasis with In Silico Molecular Docking Validation. Evid Based Complement Alternat Med. 2021: 3656272. Publishedonline doi: 10.1155/2021/3656272.

Investigation Plasma Amino Acids Profile in Patients With Bronchiectasis

Yıl 2023, Cilt: 20 Sayı: 2, 389 - 396, 31.08.2023
https://doi.org/10.35440/hutfd.1282371

Öz

Background: Bronchiectasis is a chronic respiratory disease characterized by a chronic cough, sputum production and irreversible pathological expansion of the bronchi associated with recurrent respiratory infections. Amino acids play an important role in catabolic and anabolic processes in health and disease. Data on the importance of amino acids in how and where metabolished in certain infections and diseases were mentioned in the available literature. Therefore, we evaluated plasma levels of some different amino acids profiles in patients with bronchiectasis.
Materials and Methods: Blood samples were taken from 50 bronchiectasis patients and 30 healthy indivi-duals people who had no current disease history or any pathological conditions. Plasma amino acid profiles were measured in LC-MS/MS device.
Results: In bronchiectasis patients, the plasma levels of alanine, arginine, citrulline, glutamine, glycine, lysine, ornithine, phenylalanine, proline, hydroxy proline, valine, anserine, and 1-methyl histidine were significantly increased whereas plasma levels of serine, cysteine, hitamine, glutamic acid and alpha amino adipic acid were significantly decreased when compared to the control group (P<0.01). Statistically no significant change in the levels of other amino acids such as histidin, and methyonin was observed.
Conclusions: We think that examining the amino acid profile, especially in bronchiectasis, in order to clarify the role of metabolism in the application of new treatment in the inflammatory process, may contribute to shortening the diagnosis and treatment times.

Kaynakça

  • 1. ChandrasekaranR, AogáinM M, ChalmersJ D, ElbornS J. ChotirmallS H. Geographicvariation in theaetiology, epi-demiologyandmicrobiology of bronchiectasis. BMC Pulm-Med. 2018; 18: 83. Publishedonline 2018;22. doi: 10.1186/s12890-018-0638-0.
  • 2. Shteinberg M, Flume PA, Chalmers J D. Is bronchiectasis really a disease?EurRespirRev. 2020; 31; 29(155): 190051. Publishedonline 2020 Jan 29. doi: 10.1183/16000617.0051-2019.
  • 3. ChangAB,Redding.GJ.Bronchiectasis andChronicSuppura-tiveLungDisease. Kendig'sDisorders of theRespiratoryTract in Children. 2019 :439–59. doi: 10.1016/B978-0-323-44887-1.00026-2.
  • 4. CamargoA A, Castro RAS, VieiraR P,Oliveira-JúniorM C, Aparecida de A, et al.Systemic Inflammation and Oxidati ve Stress inAdults with Bronchiectasis: Association with Clinical and Functional Features. Clinics (Sao Paulo) 2021; 76: e2474. doi: 10.6061/clinics/2021/e2474.
  • 5. OrianoM, Amati 1F, GramegnaA, Anthony De Soyza, Man-teroM, SibilaO, Sanjay H. Et al. Protease–Antiprotease Im-balance in Bronchiectasis. J. Mol. Sci. 2021, 22, 5996. https://doi.org/10.3390/ijms22115996.
  • 6. Gramegna A, Aliberti S, Seia M, Porcaro L, Bianchi V, Cas-tellani C et al. When and how ruling out cystic fibrosis in adult patients with bronchiectasis. Multidiscip Respir Med. 2018; 13(Suppl 1): 29. doi: 10.1186/s40248-018-0142.
  • 7. Guan W-J, LiJ-C, Liu F, Zhou J, Liu Y-P, Chao L, et al.. Next-generation sequencing foridentifying genetic mutations in adultswith bronchiectasis. J ThoracDis. 2018; 10(5): 2618–30. doi: 10.21037/jtd.2018.04.134.
  • 8. de Camargo A A, de Castro R A S, Vieira R P, Oliveira-Júnior M C, de Araujo A A, De Angelis K, et al. Systemic Inflam-mation and oxidative stress in adults with bronchiectasis: Association with clinical and functional features. Clinics (Sao Paulo) 2021; 76: e2474. doi: 10.6061/clinics/2021/e2474
  • 9. Garth J, Barnes JW, Krick S. Targeting cytokines as evol-ving treatment strategies in chronic Inflammatory airway diseases. Int J MolSci. 2018 Nov; 19(11): 3402. doi: 10.3390/ijms19113402.
  • 10. Wakabayashi H, Matsuzawa Y, Hayakawa S, KoIrie T, Riki-take H, Tatsuno I. Serum oxidativestress in patients with pulmonary Mycobacteriumavium complex disease. Heli-yon. 2019; 5(11): e02775. doi: 10.1016/j.heliyon.2019.e02775.
  • 11. Cavan S, Reilly C, Cynthia B, Williams CRTT, and Chris H. Wendt, MD3 Metabolomics Analysis Identifies Novel Plasma Biomarkers of Cystic Fibrosis Pulmonary Exacerba-tion Theresa A. Laguna, MD, MSCS1. Pediatr Pulmonol. 50(9): 869–77. doi:10.1002/ppul.23225.
  • 12. Paris D, Palomba L, Mirra V, Borrelli M, Corcione A, Santa-maria F, Maniscalco M, et al. NMR Profiling of exhaled breath condensate defines different metabolic phenoty-pes of non-cystic fibrosis bronchiectasis. Int J Mol Sci. 2020; 21(22):8600. doi: 10.3390/ijms21228600.
  • 13. Bar-Yoseph R, Vitzki A, Cooper D M, Gur M, Mainzer G, Hakim F, et al. Exercise capacity in patients with cystic fib-rosis vs. non-cystic fibrosis bronchiectasis. PLoS One. 2019; 14(6):237-40.
  • 14. Royle H, Kelly C. The likes of me running and walking? No chance’: exploring the perceptions of adult patients with bronchiectasis towards exercise. ChronicIlln. 2023 Mar; 19(1): 157–171. Publishedonline 2022 Jun 12. doi: 10.1177/17423953221108223.
  • 15. Han X-R, Cen L-J, Pan C-X, Lin Z-H, Li H-M, Zhang R-Let al. Decreased systemic and airway sirtuin 1 expression in adults with bronchiectasis. Front Med (Lausanne) 2021; 8: 768770. Publishedonline 2022 Jan 6. doi: 10.3389/fmed.2021.768770.
  • 16. Oriano M, Amati F, Gramegna A, De Soyza A, Mantero M, et al. Protease–Antiprotease imbalance in bronchiectasis. Int J MolSci. 2021; 22(11): 5996. Publishedonline 2021 1. doi: 10.3390/ijms22115996.
  • 17. Huang Q, Wu X, Gu Y, Wang T, Zhan Y, Chen J, Zeng Z, et al. Detection of the disorders of glycero phospho lipids and amino acids metabolism in Lung tissue from male COPD patients. Front MolBiosci. 2022; 9: 839259. doi: 10.3389/fmolb.2022.839259.
  • 18. Wang W-W, Mao B, Liu Y, Gu S-Y, Lu H-W, Bai J-W, et al. Altered fecal microbiome and metabolome in adult pati-ents with non-cystic fibrosis bronchiectasis. Respir Res. 2022; 23: 317. doi: 10.1186/s12931-022-02229-w.
  • 19. Yan Zheng. Metabolites of glutamate metabolism are associated with incident cardiovascularevents in the PREDIMED PRE vencióncon DI eta MED iterránea (PREDIMED) Trial." Journal of the American Heart Associa-tion 5.9 (2016): e003755.
  • 20. Malmezat, Thierry. Methionine trans sulfuration is increa-sed during sepsis in rats. American Journal of Physiology-Endocrinology And Metabolism 279.6 (2000): E1391-E1397
  • 21. Wu, Guoyao. Important roles for the arginine family of amino acids in swine nutrition and production Livest ock science 112(1-2)2007; 8-22.
  • 22. Bottiglieri, Teodoro. Homocysteine and folate metabolism in depression Progress in Neuro-Psychopharmacology and Biological Psychiatry 29.7 2005: 1103-12.
  • 23. Matthias F, Ronald GT, and Michael D. Wheeler. Molecular evidence for a glycine-gated chloride channel in macrop-hages and leukocytes. American Journal of Physiology-Gastrointestinal and Liver Physiology 283(4)2002; G856-G863.
  • 24. Grimble, Robert F. The effects of sulfur amino acid intake on immune function in humans. The Journal of nutrition 136(6): 2006: 1660S-65S.
  • 25. Levin M, Franklin E C, Frangione B, Pras M. The Amino acid sequence of a major non immunoglobulin component of some amyloid fibrils. J ClinInvest. 51(10) 1972; 2773–76. doi: 10.1172/JCI107098.
  • 26. Esther CR, Turkovic L, Rosenow T, Muhlebach MS, Boucher R C, Ranganathan S, et al. Metabolomic biomarkers predic-tive of early structural lung disease in cysticfibrosis. Eur-Respir J. Author manuscript; available in PMC 2018; 12..Published in final edited form as: EurRespir J. 48(6): 1612–21. 2016. 11. doi: 10.1183/13993003.00524-2016.
  • 27. Anne B. Chang, Gregory J. Redding. Bronchiectasis and chronic suppurative lung disease. Kendig's disorders of the respiratory tract in children. 2019 :439–59.e6. doi: 10.1016/B978-0-323-44887-1.00026-2.
  • 28. Shen X, Li H, Zou W-J, Wu J-M, Wang L, Wang W, et al. Network pharmacology analysis of the therapeutic mec-hanisms under lying beimu-gualou formula activity. against Bronchiectasis with In Silico Molecular Docking Validation. Evid Based Complement Alternat Med. 2021: 3656272. Publishedonline doi: 10.1155/2021/3656272.
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Klinik Tıp Bilimleri
Bölüm Araştırma Makalesi
Yazarlar

Nihayet Bayraktar 0000-0002-5745-9678

Hamdiye Turan 0000-0002-5959-542X

İsmail Koyuncu 0000-0002-9469-4757

Ataman Gönel 0000-0001-7200-1537

Mehmet Bayraktar 0000-0003-2306-6531

Hamza Erdoğdu 0000-0002-5025-2367

Erken Görünüm Tarihi 23 Ağustos 2023
Yayımlanma Tarihi 31 Ağustos 2023
Gönderilme Tarihi 13 Nisan 2023
Kabul Tarihi 29 Mayıs 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 20 Sayı: 2

Kaynak Göster

Vancouver Bayraktar N, Turan H, Koyuncu İ, Gönel A, Bayraktar M, Erdoğdu H. Bronşektazi hastalarda Serum Amino Asit Profilinin İncelenmesi. Harran Üniversitesi Tıp Fakültesi Dergisi. 2023;20(2):389-96.

Harran Üniversitesi Tıp Fakültesi Dergisi  / Journal of Harran University Medical Faculty